УДК: 621.383.49:621.793.162
Photoresistors of the 2–15 μm spectral range based on CdxHg1−xTe heteroepitaxial structures obtained by molecular-beam epitaxy
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Филатов А.В., Сусов Е.В., Кузнецов Н.С., Карпов В.В. Фоторезисторы спектрального диапазона 2-15 мкм на основе гетероэпитаксиальных структур CdxHg1–xTe, полученных методом молекулярно-лучевой эпитаксии // Оптический журнал. 2016. Т. 83. № 9. С. 43–50.
Filatov A.V., Susov E.V., Kuznetsov N.S., Karpov V.V. Photoresistors of the 2–15 μm spectral range based on CdxHg1−xTe heteroepitaxial structures obtained by molecular-beam epitaxy [in Russian] // Opticheskii Zhurnal. 2016. V. 83. № 9. P. 43–50.
A. V. Filatov, E. V. Susov, N. S. Kuznetsov, and V. V. Karpov, "Photoresistors of the 2–15 μm spectral range based on CdxHg1−xTe heteroepitaxial structures obtained by molecular-beam epitaxy," Journal of Optical Technology. 83(9), 543-548 (2016). https://doi.org/10.1364/JOT.83.000543
This paper presents the results of the development and commercial production of photoresistors from CdxHg1−xTe heteroepitaxial structures obtained by molecular epitaxy for IR engineering on the 2–15 μm spectral range. Various photoresistor designs with cooling to 80 and 230 K are presented, along with their main photoelectric parameters. The reliability of the photoresistors in terms of the gamma-percentage time to failure is calculated.
CdxHg1−xTe heteroepitaxial structures, photoresistor, reliability
Acknowledgements:The authors express their appreciation to IFP SO RAN staff members Yu. G. Sidorov, S. A. Dvoretskiı˘, N. N. Mikhaı˘lov, and V. S. Varavin for creating and investigating epitaxial structures for the photoresistors.
OCIS codes: 230.5160, 040.3060,160.6840
References:1. G. L. Hansen, J. L. Schmit, and T. N. Casselman, “Energy gap versus alloy composition and temperature in Hg 1−xCdxTe,” J. Appl. Phys. 53, 7099–7101 (1982).
2. V. S. Varavin, S. A. Dvoretsky, V. I. Liberman, N. N. Mikhailov, and Yu. G. Sidorov, “Molecular beam epitaxy of high-quality Hg 1−xCdxTe films with control of the composition distribution,” J. Cryst. Growth 159, 1161–1166 (1996).
3. P. D. Gindin, V. V. Karpov, A. V. Filatov, E. V. Susov, V. I. Petrenko, A. Yu. Nikiforov, N. S. Kuznetsov, and A. A. Gribanov, “Photoresistor with a Gray code made from HgCdTe heteroepitaxial structures for recording the pulsed radiation of a CO 2 laser,” in Transactions of the Twenty-Third International Scientific-Engineering Conference on Photoelectronics and Night-Vision Devices, Moscow, 2014, pp. 538–542.
4. A. V. Filatov, P. D. Gindin, V. V. Karpov, N. S. Kuznetsov, and E. V. Susov, “Multielement code receiver,” Russian Patent on a useful model No. 140458 (2014).
5. A. V. Filatov, E. V. Susov, A. V. Gusarov, N. M. Akimova, V. V. Krapukhin, V. V. Karpov, and V. I. Shaevich, “Long-term stability of photoresistors for the spectral range 8–12 μm, fabricated from heteroepitaxial CdHgTe structures obtained by molecular-beam epitaxy,” J. Opt. Technol. 76(12), 773–776 (2009) [Opt. Zh. 76(12), 49-54 (2009)].
6. A. V. Filatov, V. V. Karpov, E. V. Susov, A. A. Gribanov, N. S. Kuznetsov, and V. I. Petrenko, “Photoresistors with the Gray code composed of Cd xHg1−xTe on the 2–11-μm range with thermoelectric cooling,” Usp. Prikl. Fiz. 3(2), 190–195 (2015).
7. A. V. Filatov, E. V. Susov, N. M. Akimova, V. V. Karpov, and V. I. Shaevich, “High-stability photoresistors of the 8–12-μm range, made from MBE HgCdTe HESs,” Usp. Prikl. Fiz. 3(2), 196–201 (2015).
8. A. V. Filatov, N. S. Kuznetsov, P. D. Gindin, V. V. Karpov, M. E. Kozyrev, and V. I. Petrenko, “Radiation detector with thermoelectric cooling,” Russian Patent on a useful model No. 153455 (2015).
9. “Infrared detectors and related electronic devices. Catalogue VIGO System S.A.,” www.vigo.com.pl.
10. N. S. Kuznetsov, A. V. Marushchenko, P. D. Gindin, E. V. Mikhaı˘lova, and N. M. Akimova, “Radiation detector with radiative cooling,” Russian Patent on a useful model No. 111642 (2011).
11. GOST [State Standard] 27.002-89, “Reliability in engineering. Terms and definitions.”