УДК: 535.31, 681.7 53.082.5
Selection of scanners for use in lidar systems
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Артамонов С.И., Грязнов Н.А., Купренюк В.И., Романов Н.А., Соснов Е.Н. Выбор сканера для лазерной локационной системы // Оптический журнал. 2016. Т. 83. № 9. С. 51–59.
Artamonov S.I., Gryaznov N.A., Kuprenyuk V.I., Romanov N.A., Sosnov E.N. Selection of scanners for use in lidar systems [in Russian] // Opticheskii Zhurnal. 2016. V. 83. № 9. P. 51–59.
S. I. Artamonov, N. A. Gryaznov, V. I. Kuprenyuk, N. A. Romanov, and E. N. Sosnov, "Selection of scanners for use in lidar systems," Journal of Optical Technology. 83(9), 549-555 (2016). https://doi.org/10.1364/JOT.83.000549
We compare the parameters for three types of scanners used in terrain-measurement lidar systems to facilitate spacecraft landing safety on extraterrestrial objects. The following 2D scanner designs are discussed: a rotating-wedge scanner with a straight-through optical path (Risley scanner), a scanner with a 12-sided line-scan prism, a frame deflector with a uniaxial oscillating mirror, and a scanner with an oscillating mirror mounted in a two-axis gimbal. We calculated the scan trajectories and estimated the required software-based object-plane beam corrections in the scanner-system deflector angle coordinates.
laser scanning, scan trajectory, raster distortion, scan trajectory distortion elimination, laser pulse frequency management
Acknowledgements:The research was supported by the Ministry of Education and Science of the Russian Federation (Minobrnauka) (14.575.21.0055).
OCIS codes: 280.3640
References:1. E. I. Starovoı˘tov, On-Board Lidar Systems for Spacecraft: A Textbook (OAO RKK Energiya, Korolev, 2015).
2. M. Pfennigbauer, A. Ullrich, and J. P. do Carmo, “High precision, accuracy, and resolution of 3D laser scanner employing pulsed time-of-flight measurement,” Proc. SPIE 8307, 803708 (2011).
3. J. Christian, H. Hinkel, S. Maguire, C. D’Souza, and M. Patangan, “The sensor test for Orion RelNav Risk Mitigation (STORRM) development test objective,” in Proceedings of the AIAA Guidance, Navigation, and Control Conference (2011), pp. 21–40.
4. J. P. do Carmo, B. Moebius, M. Pfennigbauer, R. Bond, I. Bakalski, M. Foster, S. Bellis, M. Humphries, R. Fisackerly, and B. Houdou, “Imaging lidars for space applications,” Proc. SPIE 7061, 70610J (2008).
5. R. W. Dissly, C. Weimer, J. Masciarelli, J. Weinberg, K. L. Miller, and R. Rohrschneider, “Flash lidars for planetary missions,” in Proceedings of the International Workshop on Instrumentation for, Planetary Missions (2012), pp. 1–10.
6. M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O’Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351–370 (2002).
7. M. J. Halmos, M. Jack, J. Asbrock, C. Anderson, S. B. Bailey, G. Chapman, E. Gordon, P. E. Herning, M. H. Kalisher, L. F. Klaras, K. Kosai, V. Liquori, M. Pines, V. Randall, R. Reeder, J. P. Rosbeck, S. Sen, P. A. Trotta, P. Wetzel, A. T. Hunter, J. E. Jensen, C. W. DeLyon, T. J. Trussell, J. A. Hutchinson, and R. S. Balcerak, “3-D flash LADAR at Raytheon,” Proc. SPIE 4377, 84 (2001).
8. RIEGL VQ-820-G, Data sheet, 2014.
9. S. Kameyama, M. Imaki, Y. Tamagawa, Y. Akino, A. Hirai, E. Ishimura, and Y. Hirano, “3D imaging LIDAR with linear array devices: laser, detector and ROIC,” Proc. SPIE 7382, 738209 (2009).
10. R. M. Marino and W. R. Davis, “Jigsaw: a foliage-penetrating 3D imaging laser radar system,” Lincoln Lab. J. 15(1), 23–36 (2005).
11. N. A. Gryaznov, V. I. Kuprenyuk, and E. N. Sosnov, “Laser information system for spacecraft rendezvous and docking,” J. Opt. Technol. 82(5), 287–290 (2015) [Opt. Zh. 82(5), 27–33 (2015)].
12. Yu. V. Larchenko, A. M. Leonov, and S. M. Zhuk, “Modern scanning systems based on electromechanical light deflectors,” Zh. Lazer-Inform (9–10), 8–12 (2003).
13. N. A. Gryaznov, S. M. Pantaleev, A. E. Ivanov, and D. S. Kulikov, “High-capacity object-coordinate measurement technique for use in space,” Nauchn.-Tekhn. Ved. SPbGPU. Mat. Metod. Modelirovanie. Eksp. Issled. 2(171), 197–202 (2013).
14. M. M. Miroshnikov, Theoretical Fundamentals of Optoelectronic Devices (Mashinostroenie, Leningrad, 1977).
15. S. A. Rodionov, Principles of Optics: Lecture Notes (Saint Petersburg State Technological Institute (Technical University), Saint Petersburg, 2000).
16. K. Michel and A. Ullrich, “Scanning time-of-flight laser sensor for rendezvous manoeuvres,” in Proceedings of the 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation (ASTRA) (2004), pp. 1–6.
17. J. Liadsky, “Recent advancements in commercial LIDAR mapping and imaging systems,” in Proceedings of the NPS Lidar Workshop (2007), pp. 1–41.
18. V. A. Panov, M. Ya. Kruger, V. V. Kulagin, G. V. P. Pogarev, A. M. Levinson, I. M. Dolinskiı˘, N. A. Mikhailov, B. G. Reznitskiı˘, M. I. Kalinin, and R. M. Raguzin, Handbook for Designers of Optoelectronic Devices (Mashinostroenie, Leningrad, 1980).