ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

High-quality fringe pattern generation based on binary pattern optimization with projector defocusing

For Russian citation (Opticheskii Zhurnal):

X.-X. Li, Z.-J. Zhang High-quality fringe pattern generation based on binary pattern optimization with projector defocusing (Высококачественная генерация полосовых шаблонов на основе оптимизации бинарных паттернов с дефокусировкой) [на англ. яз.] // Оптический журнал. 2017. Т. 84. № 1. С. 32–40.

 

X.-X. Li, Z.-J. Zhang High-quality fringe pattern generation based on binary pattern optimization with projector defocusing (Высококачественная генерация полосовых шаблонов на основе оптимизации бинарных паттернов с дефокусировкой) [in English] // Opticheskii Zhurnal. 2017. V. 84. № 1. P. 32–40.

For citation (Journal of Optical Technology):

X.-X. Li and Z.-J. Zhang, "High-quality fringe pattern generation based on binary pattern optimization with projector defocusing," Journal of Optical Technology. 84(1), 22-28 (2017). https://doi.org/10.1364/JOT.84.000022

Abstract:

The real-time three-dimensional reconstruction is increasingly important in many fields. However, it is a challenge for the conventional digital fringe projection technique. The binary defocusing technique applied to the digital fringe projection technique not only significantly improves the real-time performance but also fundamentally eliminates the nonlinearity of projector. In the existing techniques, the dithering techniques based on optimization are superior to the others. However, those optimization methods have two obvious drawbacks: the objective function just qualifies the global intensity similarity while ignores the local similarity, and the optimization framework is inefficient or timeconsuming. This paper first presents a novel objective function consisting of a global intensity term and a local structure term to comprehensively evaluate similarity. Second, a model optimization framework, which includes a hybrid optimization algorithm and a half period optimization idea, is employed. Both simulations and experimental results show the advantages of the proposed objective function and the optimization framework, as well as the improvement of quality and speed of 3D reconstruction.

Keywords:

3D reconstruction, digital fringe projection, binary dithering technique, BPSO-GA hybrid algorithm

OCIS codes: 230.0230, 120.2830

References:

1. Geng J. Structured-light 3D surface imaging: a tutorial // Adv. Opt. Photonics. 2011. V. 3. № 2. P. 128–160.
2. Karpinsky N., Zhang S. High-resolution, real-time 3D imaging with fringe analysis // J. Real-Time Image Pr. 2012. V. 7. № 1. P. 55–66.
3. Zhang S. Recent progresses on real-time 3-D shape measurement using digital fringe projection techniques // Opt. Laser Eng. 2010. V. 48. № 2. P. 149–158.
4. Zhang Z.H. Review of single-shot 3D shape measurement by phase calculation-based fringe projection techniques // Opt. Laser Eng. 2012. V. 50. P. 1097–1106.
5. Lei S.Y., Zhang S. Flexible 3-D shape measurement using projector defocusing // Opt. Lett. 2009. V. 34. № 20. P. 3080–3082.
6. Ayubi G.A., Ayubi J.A., Martino Di J.M., Ferrari J.A. Pulse-width modulation in defocused three-dimensional fringe projection // Opt. Lett. 2010. V. 35. № 21. P. 3682–3684.
7. Wang Y., Zhang S. Optimal pulse width modulation for sinusoidal fringe generation with projector defocusing // Opt. Lett. 2010. V. 35. № 24. P. 4121–4123.
8. Wang Y., Zhang S. Comparison of the squared binary, sinusoidal pulse width modulation, and optimal pulse width modulation methods for three-dimensional shape measurement with projector defocusing // Appl. Opt. 2012. V. 51. № 7. P. 861–872.
9. Zuo C., Chen Q., Feng S., Feng F., Gu G., Sui X. Optimized pulse width modulation pattern strategy for threedimensional profilometry with projector defocusing // Appl. Opt. 2012. V. 51. № 19. P. 4477–4490.
10. Lohry W., Zhang S. 3D shape measurement with 2D area modulated binary patterns // Opt. Laser Eng. 2012. V. 50. № 7. P. 917–921.
11. Wang Y.J., Zhang S. Three-dimensional shape measurement with binary dithered patterns // Appl. Opt. 2012. V. 51. № 27. P. 6631–6636.
12. Li B.W., Wang Y.J., Dai J.F., Lohry W., Zhang S. Some recent advances on superfast 3D shape measurement with digital binary defocusing techniques // Opt. Laser Eng. 2014. V. 54. P. 236–246.
13. Dai J.F., Zhang S. Phase-optimized dithering technique for high-quality 3D shape measurement // Opt. Laser Eng. 2013. V. 51. № 6. P. 790–795.
14. Huang P.S., Zhang S. Fast three-step phase-shifting algorithm // Appl. Opt. 2006. V. 45. № 21. P. 5086–5091.
15. Huntley J.M., Saldner H.O. Shape measurement by temporal phase unwrapping: Comparison of unwrapping algorithms // Meas. Sci. Technol. 1997. V. 8. № 9. P. 986–992.
16. Dai J.F., Li B.W., Zhang S. High-quality fringe pattern generation using binary pattern optimization through symmetry and periodicity // Opt. Laser Eng. 2014. V. 52. P. 195–200.
17. Wang Z., Bovik A.C., Sheikh H.R., Simoncelli E.P. Image quality assessment: From error visibility to structural similarity // IEEE T. Image Process. 2004. V. 13. № 4. P. 600–612.
18. Chen X.X., Qiu J., Liu G.J. Optimal test selection based on hybrid BPSO and GA // Chinese J. Sci. Instrum. 2009. V. 30. № 8. P. 1674–1680.
19. Roberge V., Tarbouchi M., Okou F. Collaborative parallel hybrid metaheuristics on graphics processing unit // Int. J. Comp. Intel. & Appl. 2015. V. 14. № 1. P. 1–16.