ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 004.932.2

Comparative analysis of methods for classifying pulmonary nodules from computer-tomography images

For Russian citation (Opticheskii Zhurnal):

Глазнев М.Ю., Гусарова Н.Ф., Коцюба И.Ю., Рябчиков И.А., Сергеева М.В. Сравнительный анализ методов классификации легочных узлов по изображениям компьютерной томографии // Оптический журнал. 2017. Т. 84. № 1. С. 58–68.

 

Glaznev M.Yu., Gusarova N.F., Kotsyuba I.Yu., Ryabchikov I.A., Sergeeva M.V. Comparative analysis of methods for classifying pulmonary nodules from computer-tomography images [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 1. P. 58–68. 

For citation (Journal of Optical Technology):

M. Yu. Glaznev, N. F. Gusarova, I. Yu. Kotsyuba, I. A. Ryabchikov, and M. V. Sergeeva, "Comparative analysis of methods for classifying pulmonary nodules from computer-tomography images," Journal of Optical Technology. 84(1), 41-48 (2017). https://doi.org/10.1364/JOT.84.000041

Abstract:

This paper gives a comparative analysis of methods for classifying pulmonary nodules using computer-tomography images and a comparative evaluation of the information content of the attributes that are used, as well as an estimate of the effectiveness of classifying pulmonary nodules using various machine-learning algorithms. Problems involving the visual classification of pulmonary nodules and conditions for improving its accuracy are investigated. Sets of the most informative attributes are chosen for classifying pulmonary nodules. The accuracies with which pulmonary nodules are classified into benign and malignant are obtained.

Keywords:

pulmonary nodules, computer-tomography images, machine learning

OCIS codes: 100.6950

References:

1. The Lung Image Database Consortium image collection (LIDC-IDRI), https://wiki.cancerimagingarchive.net/display/Public/LIDC‑IDRI.
2. S. G. Armato III, G. McLennan, L. Bidaut, M. F. McNitt-Gray, C. R. Meyer, A. P. Reeves, B. Zhao, D. R. Aberle, C. I. Henschke, E. A. Hoffman, E. A. Kazerooni, H. MacMahon, E. J. Van Beeke, D. Yankelevitz, A. M. Biancardi, P. H. Bland, M. S. Brown, R. M. Engelmann, G. E. Laderach, D. Max, R. C. Pais, D. P. Qing, R. Y. Roberts, A. R. Smith, A. Starkey, P. Batrah, P. Caliqiuri, A. Farooqi, G. E. Gladish, C. M. Jude, R. F. Munden, J. Petkovska, L. E. Quint, L. H. Schwartz, B. Sundaram, L. E. Dodd, C. Fenimore, D. Gur, N. Petrick, J. Freymann, J. Kirby, B. Hughes, A. V. Casteele, S. Gupte, M. Sallamm, M. D. Heath, M. H. Kuhn, E. Dharaiya, R. Burns, D. S. Fryd, M. Salganicoss, V. Anand, U. Shreter, S. Vastagh, and B. Y. Croft, “The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): a completed reference database of lung nodules on CT scans,” Med. Phys. 38(2), 915–931 (2011).
3. “A single pulmonary nodule. Security protocol” http://radiographia.ru/node/1140.
4. A. V. Doronicheva and S. Z. Savin, “Methods of recognizing medical images for problems of automatic computer analysis,” Sovrem. Probl. Nauki Obraz. (4), 623–624 (2014).
5. K. Suzuki, “Pixel-based machine learning in computer-aided diagnosis of lung and colon cancer,” IEICE Trans. Inf. Syst. E96-D(4), 772–783 (2013).
6. A. A. Barchuk, M. D. Podol’skı˘, S. A. Tarakanov, I. Yu. Kotsyuba, V. S. Gadukov, V. I. Kuznetsov, V. M. Merabishvili, A. S. Barchuk, E. V. Levchenko, A. V. Filochkina, and A. I. Arsen’ev, “Automatic identification, interpretation, and classification of focal variations in the lungs on images obtained using computer tomography for lung-cancer screening,” Vopr. Onkol. 61(8), 913–919 (2015).
7. M. D. Podolsky, A. A. Barchuk, V. I. Kuznetcov, N. F. Gusarova, V. S. Gaidukov, and S. A. Tarakanov, “Evaluation of machine learning algorithm utilization for lung cancer classification based on gene expression levels,” Asian Pac. J. Cancer Prev. 17(2), 835–838 (2015).

8. A. El-Baz, G. M. Beache, G. Gimel’farb, K. Suzuki, K. Okada, A. Elnakib, A. Soliman, and B. Abdollahi, “Computer-aided diagnosis systems for lung cancer: challenges and methodologies,” Int. J. Biomed. Imaging 2013, 942353 (2013).
9. M. C. Motwani, M. C. Gadiya, R. C. Motwani, and F. C. Harris, “Survey of image denoising techniques,” in Proceedings of the Global Signal Processing Explo and Conference(GSPX) (2004), pp. 27–30.
10. O. S. Al-Kadi, “Assessment of texture measures susceptibility to noise in conventional and contrast-enhanced computed-tomography lung-tumour images,” Comput. Med. Imag. Graph. 34(6), 494–503 (2010).
11. I. R. Valente, P. C. Cortez, E. C. Neto, J. M. Soares, V. H. de Albuquerque, and J. M. Tavares, “Automatic 3D pulmonary nodule detection in CT images: a survey,” Comput. Meth. Prog. Biomed. 124, 91–107 (2015).
12. A. Farag, A. Ali, J. Graham, S. Elshazly, and R. Falk, “Evaluation of geometric feature descriptors for detection and classification of lung nodules in low-dose CT scans of the chest,” in Proceedings of the 8th IEEE International Symposium of Biomedical Imaging: From Nano to Macro (IEEE, 2011), pp. 169–172.
13. P. L. Lin, P. W. Huang, C. H. Lee, and M. T. Wu, “Automatic classification for solitary pulmonary nodule in CT image by fractal analysis based on fractional Brownian motion model,” Pattern Recognit. 46(12), 3279–3287 (2013).
14. D. Kumar, A. Wong, and D. Clausi, “Lung nodule classification using deep features in CT images,” in 12th Conference on Computer and Robot Vision (CRV) (2015), pp. 133–138.
15. G. Van de Wouwer, P. Scheunders, and D. Van Dyck, “Statistical texture characterization from discrete wavelet representations,” IEEE Trans. Image Proc. 8(4), 592–598 (1999).
16. M. Assefa, I. Faye, and A. S. Malik, “Lung nodule detection using multiresolution analysis,” in Proceedings of the International Conference on Complex Medical Engineering (CME) (2013), pp. 457–461.
17. X. Ye, X. Lin, J. Dehmeshki, G. Slabaugh, and G. Beddoe, “Shape-based computer-aided detection of lung nodules in thoracic CT images,” IEEE Trans. Biomed. Eng. 56(7), 1810–1820 (2009).
18. O. Talakoub, J. Alirezaie, and P. Babyn, “Lung segmentation in pulmonary CT images using wavelet transform,” in International Conference on Acoustics, Speech and Signal Proceeding (ICASSP) (2007), Vol. 1, pp. I-453–I-456.
19. H. M. Orozco, O. Vergara, V. G. C. Sanchez, D. J. O. Dominguez, and M. Nandayapa, “Automated system for lung nodules classification based on wavelet feature descriptor and support vector machine,” Biomed. Eng. Online 14(1), 1–20 (2015).
20. T. Osicka, “Wavelet-based pulmonary nodules features characterization on computed tomography (CT) scans,” Ph.D dissertation (Catholic University of America, 2008).
21. R. Kohad and V. Ahire, “Application of machine learning techniques for the diagnosis of lung cancer with ANT colony optimization,” Int. J. Comput. Appl. 113(18), 34–41 (2015).
22. K. L. Hua, C. H. Hsu, S. C. Hidayati, W. H. Cheng, and Y. J. Chen, “Computer-aided classification of lung nodules on computed tomography images via deep learning technique,” OncoTargets Ther. 8, 2015–2022 (2015).
23. N. S. Lingayat and M. R. Tarambale, “A computer-based feature extraction of lung nodule in chest X-ray image,” Int. J. Biosci. Biochem. Bioinf. 3(6), 624–629 (2013).
24. K. Clark, B. Vendt, K. Smith, J. Freymann, J. Kirby, P. Koppel, S. Moore, S. Phillips, D. Maffitt, M. Pringle, L. Tarbox, and F. Prior, “The cancer imaging archive (TCIA): maintaining and operating a public information repository,” J. Digit. Imag. 26(6), 1045–1057 (2013).
25. R. Susomboon, D. S. Raicu, and J. D. Furst, “Pixel-based texture classification of tissues in computed tomography,” in CTI Research Symposium (2006), pp. 265–270.
26. W. Pabst and E. Gregorová, Characterization of Particles and Particle Systems (ICT, Prague, 2007), pp. 27–29.
27. R. M. Kharalik, “Statistical and structural approaches to the description of textures,” Tr. Inst. Inzh. Elektrotekh. Radioélektronike 67(5), 98–118 (1979).
28. Biblioteka Accord.NET Framework, http://accord‑framework.net/docs/html/N_Accord_Math_Wavelets.htm.
29. D. Emil, G. Sonja, and G. Mislav, “The use of wavelets in image interpolation: possibilities and limitations,” Radioengineering 16(4), 101–109 (2007).
30. T. Acharya and P. S. Tsai, “Computational foundations of image interpolation algorithms,” ACM Ubiquity 2007(42), 1–17 (2007).
31. D. A. Fedorov, “Image-scaling method with an integral factor based on wavelet transformation,” J. Opt. Technol. 80(3), 166–170 (2013) [Opt. Zh. 80(3), 52–57 (2013)].
32. R. M. Rangayyan, Biomedical Signal Analysis (Wiley-IEEE, New York, 2002/2015; Fizmatlit, Moscow, 2007).
33. N. S. Lingayat and M. R. Tarambale, “A computer based feature extraction of lung nodule in chest X-ray image,” Int. J. Biosci. Biochem. Bioinf. 3(6), 624–629 (2013).
34. L. A. Gladkov, V. V. Kurechik, and V. M. Kurechik, Genetic Algorithms: A Textbook (Fizmatlit, Moscow, 2006).
35. Waikato Environment for Knowledge Analysis (WEKA), http://weka.sourceforge.net/.