УДК: 535.016, 535.15, 535.041.08
Study of optical and piezoelectric properties of thin-film Si-SiO2-ZnO structure via pulsed-laser optoacoustic spectroscopy
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Григорьев Л.В., Мазуров М.А., Шакин О.В., Нефедов В.Г., Михайлов А.В. Исследование оптических и пьезоэлектрических свойств тонкоплёночной структуры Si-SiO2-ZnO методом импульсной лазерной оптоакустической спектроскопии // Оптический журнал. 2017. Т. 84. № 2. С. 90–94.
Grigoriev L.V., Mazurov M.A., Shakin O.V., Nefedov V.G., Mikhaylov A.V. Study of optical and piezoelectric properties of thin-film Si-SiO2-ZnO structure via pulsed-laser optoacoustic spectroscopy [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 2. P. 90–94.
L. V. Grigor’ev, M. A. Mazurov, O. V. Shakin, V. G. Nefedov, and A. V. Mikhaĭlov, "Study of optical and piezoelectric properties of thin-film Si-SiO2-ZnO structure via pulsed-laser optoacoustic spectroscopy," Journal of Optical Technology. 84(2), 137-139 (2017). https://doi.org/10.1364/JOT.84.000137
The results of an investigation of the optical and piezoelectric properties of a Si-SiO2-ZnO microstructure via pulsed-laser optoacoustic spectroscopy are presented. Using optoacoustic probing, the speed of an acoustic wave propagating in the zinc oxide layer was calculated to be 3.01×103 m/s, and the acoustic wave absorption coefficient was determined to be 3.45 dB/cm. The acousto-optic constant M2 for the ZnO film was determined to be 8.78×10−18 s3/g using the modified Dixon method.
zinc oxide, optoacoustic probing, pulsed-laser optoacoustic spectroscopy
Acknowledgements:The research was supported by the Russian Foundation for Basic Research (RFBR) (16-07-00237).
OCIS codes: 250.0250, 300.0300, 310.0310, 160.0160
References:1. V. B. Voloshinov, P. A. Nikitin, A. S. Trushin, and L. N. Magdich, “Acousto-optic cell on a paratellurite crystal with surface excitation of bulk acoustic waves,” Pis’ma Zh. Tekh. Fiz. 37(16), 22–28 (2011).
2. E. S. Avdoshin, “Light-guide IR radiometer with polarization modulation of radiation in a planar waveguide,” Avtometriya (1), 42–46 (1991).
3. V. Srikant and D. R. Clarke, “On optical band gap of zinc oxide,” J. Appl. Phys. 83, 5447–5451 (1998).
4. C. Gumus, O. M. Ozkedid, H. Kovak, and Y. Ufuktepe, “Structural and optical properties of zinc oxide thin films,” J. Optoelectron. Adv. Mater. 8(1), 299–3003 (2006).
5. L. V. Grigor’ev, V. G. Nefedov, O. V. Shakin, A. V. Mikhaı˘lov, and E. N. Eliseev, “Study of the structural and optical properties of thin polycrystalline zinc oxide films obtained by the ion-plasma method,” J. Opt. Technol. 82(5), 315–318 (2015) [Opt. Zh. 82(5), 66-70 (2015)].
6. A. A. Karabutov, M. P. Matrosov, N. B. Podymova, and V. A. Pyzh, “Impulse acoustic spectroscopy with a laser source of sound,” Akust. Zh. 37(2), 311–322 (1991).
7. V. E. Gusev and A. A. Karabutov, Laser Optoacoustics (Nauka Fizmatlit, Moscow, 1991).
8. A. A. Karabutov, I. M. Pelivanov, N. B. Podymova, and S. E. Skypetrov, “Measurement of optical characteristics of scattering media by a laser opto-acoustic method,” Quantum Electron. 29(3), 215–220 (1999).
9. L. V. Burmistrova, O. V. Rudenko, and E. B. Cherepetskaya, “The method of transfer functions in problems of thermo-optical excitation of sound,” Akust. Zh. 28(5), 655–663 (1978).
10. O. B. Gusev and V. V. Kludzin, Acousto-optic Measurements (Izd LGU, Leningrad, 1987).
11. A. A. Karabutov, N. B. Podymova, and V. S. Letokhov, “Time-resolved laser optoacoustic tomography of inhomogeneous Media,” Appl. Phys. B 63, 545–563 (1996).
12. V. Ya. Arsenin and A. N. Tikhonov, Numerical Methods for Solving Ill-Posed Problems (Nauka, Moscow, 1991).
13. A. I. Morozov, V. V. Proklov, B. A. Stankovsky, and A. N. Gingis, Piezoelectric Semiconductor Transducers (Energiya, Moscow, 1973).