УДК: 681.785.552
Setup for recording a variable-line-spacing diffraction grating for the far-UV region
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Муслимов Э.Р., Белокопытов А.А., Саттаров Ф.А., Коренной К.С. Схема записи дифракционной решетки с переменным шагом штрихов для дальнего ультрафиолетового диапазона спектра // Оптический журнал. 2017. Т. 84. № 3. С. 41–46.
Muslimov E.R., Belokopytov A.A., Sattarov F.A., Korennoy K.S. Setup for recording a variable-line-spacing diffraction grating for the far-UV region [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 3. P. 41–46.
É. R. Muslimov, A. A. Belokopytov, F. A. Sattarov, and K. S. Korennoĭ, "Setup for recording a variable-line-spacing diffraction grating for the far-UV region," Journal of Optical Technology. 84(3), 190-194 (2017). https://doi.org/10.1364/JOT.84.000190
This paper discusses the optical setup of a grazing-incidence spectrograph for the 10–30-nm far-UV region. The aberrations in this setup are corrected by using a variable-line-spacing diffraction grating. The variation of the spacing over the grating area is significant in such a setup and cannot be maintained if the grating is mechanically cut on a ruling engine. It is proposed to use a holographic analog grating with the calculated parameters. To record such a grating, it is necessary to include an auxiliary objective in the setup, mounted obliquely in one of the arms of the recording setup. The parameters of the latter are determined analytically for the meridional cross section and then fine-tuned by numerical optimization. The results of modeling a spectrograph setup with a holographic grating show that its spectral resolution corresponds to that of a setup with an ideal grating and reaches 0.01 nm.
diffraction grating, holographic recording, meridional coma, far-UV region
Acknowledgements:The authors are grateful to E. N. Ragozin (P. N. Lebedev Physics Institute, Moscow) for help in formulating the research problem and for valuable consultation in the area of FUV spectroscopy.
OCIS codes: 090.2890,230.1950,040.7480
References:1. E. Pace, L. Tommasi, P. Nicolosi, P. Villoresi, and G. Tondello, “New concept CCD camera for laser-produced plasmas imaging spectroscopy in the XUV spectral region,” Proc. SPIE 2808, 271–281 (1996).
2. J. Seely, C. Brown, M. Kowalski, R. Cruddace, and T. Barbee, “X-ray and XUV imaging and spectroscopy of dense plasmas using multilayer optics,” Proc. SPIE 2523, 94–101 (1995).
3. R. R. Fäustlin, S. Toleikis, Th. Bornath, T. Döppner, S. Düsterer, E. Förster, C. Fortmann, S. H. Glenzer, S. Göde, G. Gregori, R. Irsig, T. Laarmann, H. J. Lee, B. Li, K. H. Meiwes-Broer, J. Mithen, A. Przystawik, H. Redlin, R. Redmer, H. Reinholz, G. Röpke, F. Tavella, R. Thiele, J. Tiggesbäumker, I. Uschmann, U. Zastrau, and Th. Tschentscher, “Soft X-ray Thomson scattering in warm dense hydrogen at FLASH,” Proc. SPIE 7451, 74510D (2009).
4. I. A. Zhitnik, A. P. Ignatiev, V. V. Korneev, V. V. Krutov, and S. V. Kuzin, “Instruments for imaging XUV spectroscopy of the sun on board the CORONAS-I satellite,” Proc. SPIE 3406, 1–16 (1998).
5. M. Kowalski, R. Cruddace, K. Wood, D. Yentis, and M. Wolff, “Proposed mission concept for the Astrophysical Plasmadynamic Explorer (APEX): an EUV high-resolution spectroscopic SMEX,” Proc. SPIE 5164, 1–16 (2003).
6. J. F. Meekins, R. G. Cruddace, H. Guraky, and G. G. Fritz, “The optimization of the Rowland circle grating for high-resolution XUV spectroscopy,” Am. Astron. Soc. Photo-Bull. 17, 549 (1985).
7. T. Aton, C. Franck, E. Köllne, S. Schnatterly, and F. Zutavern, “A new toroidal grating spectrometer for the soft X-ray region,” Nucl. Instrum. Methods 172(1–2), 173–175 (1980).
8. T. Harada, H. Sakuma, and K. Takahashi, “Design of a high-resolution extreme-ultraviolet imaging spectrometer with aberration-corrected concave gratings,” Appl. Opt. 28(37), 6803–6810 (1998).
9. M. C. Hettrick, J. H. Underwood, P. J. Batson, and M. J. Eckart, “Resolving power of 35,000 (5 mA) in the extreme ultraviolet employing a grazing incidence spectrometer,” Appl. Opt. 27(2), 200–202 (1988).
10. N. K. Pavlycheva, Spectral Devices with Nonclassical Diffraction Gratings (Izd. Kazan. Gos. Tekhn. Univ., Kazan, 2003).
11. N. K. Pavlycheva and E. R. Muslimov, “Compact dual-band spectrograph,” Adv. Opt. Technol. 1(6), 455–461 (2012).
12. C. Palmer, “Theory of second-generation holographic diffraction gratings,” J. Opt. Soc. Am. 6(8), 1175–1188 (1989).