УДК: 621.383.45, 621.793.09
Formation, nature, and annealing of defects in Cd0.2Hg0.8Te heteroepitaxial structures and photoresistors subjected to ion etching
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Филатов А.В., Сусов Е.В., Карпов В.В. Образование, природа и отжиг дефектов в гетероэпитаксиальных структурах Cd0,2Hg0,8Te и фоторезисторах, подвергнутых ионному травлению // Оптический журнал. 2017. Т. 84. № 4. С. 67–72.
Filatov A.V., Susov E.V., Karpov V.V. Formation, nature, and annealing of defects in Cd0.2Hg0.8Te heteroepitaxial structures and photoresistors subjected to ion etching [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 4. P. 67–72.
A. V. Filatov, E. V. Susov, and V. V. Karpov, "Formation, nature, and annealing of defects in Cd0.2Hg0.8Te heteroepitaxial structures and photoresistors subjected to ion etching," Journal of Optical Technology. 84(4), 275-280 (2017). https://doi.org/10.1364/JOT.84.000275
The formation of defects in CdxHg1−xTe (x≈0.2) during etching with ions of argon (1 keV) and their behavior during annealing were studied. The nature of these defects was established. The concentration of the majority charge carriers during annealing was determined by measuring the dependence of the voltage sensitivity on the bias voltage of photoresistors fabricated from CdxHg1−xTe heteroepitaxial structures (x≈0.2) obtained by molecular beam epitaxy. It is shown that the change in the concentration of the majority charge carriers during the annealing process is determined by the diffusion of singly charged donors, which are mercury vacancy complexes with excessive interstitial mercury, and by the diffusion coefficients of singly and doubly charged mercury vacancies, whose concentrations are determined by the equilibrium concentrations of point defects.
Cd0.2Hg0.8Te heteroepitaxial structures, photoresistor, ion etching, mercury vacancies diffusion
Acknowledgements:The authors are grateful to the staff of IPS SB RAS Yu. G. Sidorov, S. A. Dvoretskiı˘, N. N. Mikhaı˘lov, and V. S. Varavin for the fabrication and study of epitaxial structures of MCT for photoresistors.
OCIS codes: 230.5160, 040.3060, 160.6840
References:1. K. D. Mynbaev and V. I. Ivanov-Omskiı˘, “Modification of the properties of CdxHg 1−xTe by low-energy ions,” Fiz. Tverd. Tela. 37(10), 1153–1178 (2003).
2. M. Potsyask, I. I. Inzhin, S. A. Dvoretskiı˘, N. N. Mikhaı˘lov, Yu. G. Sidorov, V. S. Varavin, K. D. Mynbaev, and V. I. Ivanov-Omskiı˘, “Electrical properties of heteroepitaxial layers of n-type CdHgTe modified by ion etching,” Fiz. Tverd. Tela. 8(12), 1144–1446 (2008).
3. V. S. Varavin, S. A. Dvoretsky, V. I. Liberman, N. N. Mikhailov, and Yu. G. Sidorov, “Molecular beam epitaxy of high quality Hg 1–xCdxTe films with control of the composition distribution,” J. Cryst. Growth 159, 1161–1166 (1996).
4. P. S. Catagnus and C. T. Baker, “Passivation of mercury cadmium telluride semiconductor surfaces by anodic oxidation,” US Patent No. 3977018 (1976).
5. M. A. Kinch, S. R. Borrello, and A. Simmons, “0.1 eV HgCdTe photoconductive detector performance,” Infrared Phys. 17(2), 127–135 (1977).
6. J. F. Siliquini, K. A. Fynn, B. D. Nener, L. Faraone, and R. H. Hartley, “Improved device technology for epitaxial CdxHg1−xTe infrared photoconductor arrays,” Semicond. Sci. Technol. 9, 1515–1522 (1994).
7. A. V. Gorshkov, “Point defects and impurities in Cd 0.2Hg0.8Te,” Vysok. Veshch. (6), 207–214 (1989).
8. E. Belas, R. Grill, J. Franc, P. Moravec, R. Vorghova, P. Höschl, H. Sitter, and A. L. Toth, “Dynamics of the native point defects in H 2 and Ar plasma-etched narrow gap (HgCd)Te,” J. Cryst. Growth 224, 52–58 (2001).
9. F. A. Zaitov, F. K. Isaev, and A. V. Gorshkov, Defect Formation and Diffusion Processes in Some Semiconductor Solid Solutions (Azerbaijan State Publishing House, Baku, Azerbaijan, 1984).
10. B. I. Boltaks, Diffusion in Semiconductors (State Publishing House for Physics, Mathematics, and Literature, Moscow, 1961).