ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

InGaAs/InAlAs avalanche photodetectors integrated on silicon-on-insulator waveguide circuits

For Russian citation (Opticheskii Zhurnal):

Dongdong Yin, Xiaohong Yang, Tingting He, Qianqian Lv, Han Ye, Qin Han InGaAs/InAlAs avalanche photodetectors integrated on silicon-on-insulator waveguide circuits (Лавинные фотодетекторы на основе InGaAs/InAlAs, интегрированные с волноводными структурами «кремний на изоляторе») [на англ. яз.] // Оптический журнал. 2017. Т. 84. № 5. С. 80–85.

 

Dongdong Yin, Xiaohong Yang, Tingting He, Qianqian Lv, Han Ye, Qin Han InGaAs/InAlAs avalanche photodetectors integrated on silicon-on-insulator waveguide circuits (Лавинные фотодетекторы на основе InGaAs/InAlAs, интегрированные с волноводными структурами «кремний на изоляторе») [in English] // Opticheskii Zhurnal. 2017. V. 84. № 5. P. 80–85.

For citation (Journal of Optical Technology):

Dongdong Yin, Xiaohong Yang, Tingting He, Qianqian Lv, Han Ye, and Qin Han, "InGaAs/InAlAs avalanche photodetectors integrated on silicon-on-insulator waveguide circuits," Journal of Optical Technology. 84(5), 350-354 (2017). https://doi.org/10.1364/JOT.84.000350

Abstract:

We simulated an evanescently coupled InGaAs/InAlAs avalanche photodetector integrated on silicon-oninsulator waveguide circuits using benzocyclobutene as the bonding layer. A silicon fiber-grating coupler is adopted to couple light from the fiber to the Si waveguide and light can finally be absorbed in the absorption region. Simulations around improving the optical coupling efficiency with different device dimensions such as different benzocyclobutene bonding thicknesses, different InP layer parameters and different silicon waveguide widths were carried out. The simulation result shows a detection efficiency of 96.7% for 2 μm silicon waveguide device with a photodetector length of 40 μm which can get a gain-bandwidth product of 135 GHz at 1550 nm.

Keywords:

silicon-on-insulator, avalanche photodetector, evanescent wave, benzocyclobutene bonding

OCIS codes: 040.1345, 040.5160, 130.5990, 200.4650

References:

1. Personick S.D. Receiver design for digital fiber optic communication systems, I // Bell Syst. Tech. J. 1973. V. 52. P. 843.
2. Forrest S.R. Sensitivity of avalanche photodetector receivers for high-bit-rate long-wavelength optical communication systems // Semiconduct. Semimet. 1985. V. 22. P. 329.
3. Kasper B.L., Campbell J.C. Multigigabit per-second avalanche photodiode lightwave receivers // J. Light Technol. 1987. V. 5. P. 1351.
4. Watanabe I., Torikai T., Makita K., Fukushima K., Uji T. Impact ionization rates in (100) Al(0.48)In(0.52)As // IEEE Electr. Device L. 1990. V. 11. P. 437.
5. Absil P.P., Verheyen P., Heyn P.D., Pantouvaki M., Lepage G., Coster J.D., Campenhout J.V. Silicon photonics integrated circuits: A manufacturing platform for high density, low power optical I/O’s // Opt. Exp. 2015. V. 23. P. 9369.
6. Sui S., Tang M., Yang Y., Xiao J., Du Y., Huang Y. Mode investigation for hybrid microring lasers with sloped sidewalls coupled to a silicon waveguide // IEEE Photon. J. 2015. V. 7. P. 1.
7. Streshinsky M., Ding R., L iu Y., Novack A., Galland C., Lim A.E.J., Guo-Qiang L o P., Baehr-Jones T., Hochberg M. The road to affordable, large-scale silicon photonics // Opt. Photon. News. 2013. V. 24. P. 32.
8. Baehr-Jones T., Pinguet T., Lo P.G.Q., Danziger S., Prather D., Hochberg M. Myths and rumours of silicon photonics // Nat. Photon. 2012. V. 6. P. 206.
9. Heck M.J.R., Chen H.W., Fang A.W., Koch B.R., Liang D., Park H., Sysak M.N., Bowers J.E. Hybrid silicon photonics for optical interconnects // IEEE J. Sel. Topics Quantum Electron. 2011. V. 17. P. 333.
10. Ohira K., Kobayashi K., Iizuka N., Yoshida H., Ezaki M., Uemura H., Kojima A., Nakamura K., Furuyama H., Shibata H. On-chip optical interconnection by using integrated III–V laser diode and photodetector with silicon waveguide // Opt. Exp. 2010. V. 18. P. 15440.
11. Boyraz O., Jalali B. Demonstration of a silicon Raman laser // Opt. Exp. 2004. V. 12. P. 5269.
12. Liu A., Liao L., Rubin D., Nguyen H., Ciftcioglu B., Chetrit Y., Izhaky N., Paniccia M. High-speed optical modulation based on carrier depletion in a silicon waveguide // Opt. Exp. 2007. V. 15. P. 660.
13. Campenhout J.V., Binetti P.R.A., Romeo P.R., Regreny P., Seassal C., Leijtens X.J.M., Vries T.D. Low-footprint optical interconnect on an SOI chip through heterogeneous integration of InP-based microdisk lasers and microdetectors // IEEE Photonics Technol. Lett. 2009. V. 21. P. 522.
14. Chunnilall C.J., Lepert G., Allerton J.J., Hart C.J., Sinclair A.G. Traceable metrology for characterizing quantum optical communication devices // Metrologia. 2014. V. 51. P. S258.
15. Gisin N., Thew R. Quantum communication // Nature Photon. 2007. V. 1. P. 165.
16. Kinsey G.S., Campbell J.C., Dentai A.G. Waveguide avalanche photodiode operating at 1.55 μm with a gain-bandwidth product of 320 GHz // IEEE Photonic. Tech. L. 2001. V. 13. P. 842.
17. Shiba K., Nakata T., Takeuchi T., Sasaki T., Makita K. 10 Gbit/s asymmetric waveguide APD with high sensitivity of 30 dBm // Electron. Lett. 2006. V. 42. P. 1177.
18. Ang K.W., Lo P.G.Q. Avalanche photodetectors: Si charge avalanche enhances APD sensitivity beyond 100 GHz // Laser Focus World. 2010. V. 46.
19. Keyvaninia S., Muneeb M., Stanković S., Van Veldhoven P.J., Van Thourhout D., Roelkens G. Ultra-thin DVS-BCB adhesive bonding of III–V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate // Opt. Mat. Exp. 2013. V. 3. P. 35.
20. Roelkens G., Liu L., Liang D., Jones R., Fang A., Koch B., Bowers J. III–V/silicon photonics for on-chip and intra-chip optical interconnects // Laser & Photon. Rev. 2010. V. 4. P. 751.
21. Sheng Z., Liu L., Brouckaert J., He S.L., Thourhout D.V. InGaAs PIN photodetectors integrated on silicon-on-insulator waveguides // Opt. Exp. 2010. V. 18. P. 1757.
22. Liang D., Roelkens G., Baets R., Bowers J.E. Hybrid integrated platforms for silicon photonics // Mat. 2010. V. 3. P. 1782.
23. Emmons R.B. Avalanche-photodiode frequency response // J. Appl. Phys. 1967. V. 38. P. 3705.