ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 004.27, 530.145

Sideband quantum communication at 1  Mbit/s on a metropolitan area network

For Russian citation (Opticheskii Zhurnal):

Глейм А.В., Чистяков В.В., Банник О.И., Егоров В.И., Булдаков Н.В., Васильев А.Б., Гайдаш А.А., Козубов А.В., Смирнов С.В., Кынев С.М., Хоружников С.Э., Козлов С.А., Васильев В.Н. Квантовая коммуникация на боковых частотах со скоростью 1 Мбит/с в городской сети // Оптический журнал. 2017. Т. 84. № 6. С. 3–9.

 

Gleim A.V., Chistyakov V.V., Bannik O.I., Egorov V.I., Buldakov N.V., Vasiliev A.B., Gaydash A.A., Kozubov A.V., Smirnov S.V., Kynev S.M., Khoruzhnikov S.E., Kozlov S.A., Vasiliev V.N. Sideband quantum communication at 1 Mbit/s on a metropolitan area network [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 6. P. 3–9.

For citation (Journal of Optical Technology):

A. V. Gleĭm, V. V. Chistyakov, O. I. Bannik, V. I. Egorov, N. V. Buldakov, A. B. Vasilev, A. A. Gaĭdash, A. V. Kozubov, S. V. Smirnov, S. M. Kynev, S. É. Khoruzhnikov, S. A. Kozlov, and V. N. Vasil’ev, "Sideband quantum communication at 1  Mbit/s on a metropolitan area network," Journal of Optical Technology. 84(6), 362-367 (2017). https://doi.org/10.1364/JOT.84.000362

Abstract:

We demonstrate qubit transmission via an optical cable in a metropolitan area network using quantum communications via sidebands with record-setting system parameters for such systems in network mode. The sifted-key generation rate was 1.06 Mbits/s with losses of 1.63 dB and a quantum error coefficient of 1%.

Keywords:

quantum communication, quantum networks, fiber optic communications links

Acknowledgements:

The research was supported by the Ministry of Education and Science of the Russian Federation (Minobrnauka) Unique Applied Scientific Research and Experimental Development  (1414.578.21.0112, RFMEFI57815X0112, 02.G25.31.0229.

OCIS codes: 060.5565, 270.5565, 270.5568

References:

1. M. A. Nielsen and I. L. Chang, Quantum Computation and Quantum Information (Cambridge University, Cambridge, 2001; Mir, Moscow, 2006).
2. H.-K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photonics 8, 595–604 (2014).
3. H. Takesue, S. D. Dyer, M. J. Stevens, V. Verma, R. P. Mirin, and S. W. Nam, “Quantum teleportation over 100 km of fiber using highly efficient superconducting nanowire single-photon detectors,” Optica 2(10), 832–835 (2015).
4. C. H. Bennett and S. J. Wiesner, “Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states,” Phys. Rev. Lett. 69, 2881 (1992).
5. K. A. Patel, J. F. Dynes, M. Lucamarini, I. Choi, A. W. Sharpe, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks,” Appl. Phys. Lett. 104, 051123 (2014).
6. B. Korzh, C. C. W. Lim, R. Houlmann, N. Gisin, M. J. Li, D. Nolan, B. Sanguinetti, R. Thew, and H. Zbinden, “Provably secure and practical quantum key distribution over 307 km of optical fibre,” Nat. Photonics 9, 163–168 (2015).
7. H.-L. Yin, T.-Y. Chen, Z.-W. Yu, H. Liu, L.-X. You, Y.-H. Zhou, S.-J. Chen, Y. Mao, M.-Q. Huang, W.-J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X.-B. Wang, and J.-W. Pan, “Measurement-device-independent quantum key distribution over a 404 km optical fiber,” Phys. Rev. Lett. 117, 190501 (2016).
8. K. Inoue, E. Waks, and Y. Yamamoto, “Differential phase-shift quantum key distribution,” Proc. SPIE 4917, 32–39 (2002).
9. D. Stucki, N. Brunner, N. Gisin, V. Scarani, and H. Zbinden, “Fast and simple one-way quantum key distribution,” Appl. Phys. Lett. 87, 194108 (2005).
10. Y. T. Mazurenko, J.-M. Merolla, and J.-P. Godgebur, “Quantum transmission of information with the help of subcarrier frequency: application to quantum cryptography,” Opt. Spectrosc. 86, 145–147 (1999) [Opt. Spektrosk. 86(2), 181–183 (2002)].
11. J. Mora, A. Ruiz-Alba, W. Amaya, A. Martínez, V. García-Muñoz, D. Calvo, and J. Capmany, “Experimental demonstration of subcarrier multiplexed quantum key distribution system,” Opt. Lett. 37, 2031–2033 (2012).
12. A. V. Gleim, V. I. Egorov, Yu. V. Nazarov, S. V. Smirnov, V. V. Chistyakov, O. I. Bannik, A. A. Anisimov, S. M. Kynev, A. E. Ivanova, R. J. Collins, S. A. Kozlov, and G. S. Buller, “Secure polarization-independent subcarrier quantum key distribution in optical fiber channel using BB84 protocol with a strong reference,” Opt. Express 24(3), 2619–2633 (2016).
13. A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “‘Plug and play’ systems for quantum cryptography,” Appl. Phys. Lett. 70, 793–795 (1997).
14. P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7(5), 378–381 (2013).
15. M. Peev, C. Pacher, R. Alléaume, C. Barreiro, J. Bouda, W. Boxleitner, T. Debuisschert, E. Diamanti, M. Dianati, J. Dynes, S. Fasel, S. Fossier, M. Fürst, J. D. Gautier, O. Gay, N. Gisin, P. Grangier, A. Happe, Y. Hasani, M. Hentschel, H. Hübel,G. Humer, T. Länger, M. Legré, R. Lieger, J. Lodewyck, T. Lorünser, N. Lütkenhaus, A. Marhold, T. Matyus, O. Maurhart, L. Monat, S. Nauerth, J.-B. Page, A. Poppe, E. Querasser, G. Ribordy, S. Robyr, L. Salvail, A. W. Sharpe, A. J. Shields, D. Stucki, M. Suda, C. Tamas, T. Themel, R. T. Thew, Y. Thoma, A. Treiber, P. Trinkler, R. Tualle-Brouri, F. Vannel, N. Walenta, H. Weinfurter, I. Wimberger, Z. L. Yuan, H. Zbinden, and A. Zeilinger, “The SECOQC quantum key distribution network in Vienna,” New J. Phys. 11, 075001 (2009).
16. D. Stucki, M. Legre, F. Buntschu, B. Clausen, N. Felber, N. Gisin, L. Henzen, P. Junod, G. Litzistorf, P. Monbaron, L. Monat, J.-B. Page, D. Perroud, G. Ribordy, A. Rochas, S. Robyr, J. Taveres, R. Thew, P. Trinkler, S. Ventura, R. Voirol, N. Walenta, and H. Zbinden, “Long-term performance of the SwissQuantum quantum key distribution network in a field environment,” New J. Phys. 13, 123001 (2011).
17. M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, and A. Zeilinger, “Field test of quantum key distribution in the Tokyo QKD Network,” Opt. Express 19(11), 10387–10409 (2011).
18. ID Quantique, http://www.idquantique.com/photon‑counting/clavis3‑qkd‑platform/.
19. MagiQ, http://www.magiqtech.com.
20. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, Hoboken, 2010).
21. O. L. Guerreau, J.-M. Mérolla, A. Soujaeff, F. Patois, J.-P. Goedgebuer, and F. J. Malassenet, “Long-distance QKD transmission using single-sideband detection scheme with WDM synchronization,” IEEE J. Sel. Top. Quantum Electron. 9, 1533–1540 (2003).
22. A. V. Gleim, A. A. Anisimov, L. N. Asnis, Yu. B. Vakhtomin, A. V. Divochiy, V. I. Egorov, V. V. Kovalyuk, A. A. Korneev, S. M. Kynev, Yu. V. Nazarov, R. V. Ozhegov, A. V. Rupasov, K. V. Smirnov, M. A. Smirnov, G. N. Goltsman, and S. A. Kozlov, “Quantum key distribution in an optical fiber at distances of up to 200 km and a bit rate of 180 bit/s,” Bull. Russ. Acad. Sci. 78(3), 171–175 (2014) [Izv. Ross. Akad. Nauk. Ser. Fiz. 78(3), 266–270 (2014)].
23. A. V. Gleı˘m, “Development of the ITMO University quantum network,” in Collected Papers of the VIII International Conference on Fundamental Problems in Optics (ITMO, Saint Petersburg, 2014), pp. 3–4.
24. A. V. Gleim, Yu. V. Nazarov, V. I. Egorov, S. V. Smirnov, O. I. Bannik, V. V. Chistyakov, S. M. Kynev, A. A. Anisimov, S. A. Kozlov, and V. N. Vasilev, “Subcarrier wave quantum key distribution in telecommunication network with bitrate 800 kbit/s,” EPJ Web Conf. 103, 10005 (2015).
25. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
26. O. L. Guerreau, F. J. Malassenet, S. W. McLaughlin, and J.-M. Merolla, “Quantum key distribution without a single-photon source using a strong reference,” IEEE Photon. Technol. Lett. 17, 1755–1757 (2005).
27. G. Miroshnichenko and A. Gleim, “Quantum Hamiltonian theory of an electro-optical modulator,” Opt. Spectrosc. 119, 92–97 (2015) [Opt. Spektrosk. 119(1), 96–101 (2015)].
28. S. M. Kynev, A. E. Ivanova, V. I. Egorov, A. V. Gleı˘m, A. V. Rupasov, and S. A. Chivilikhin, “Mathematical description of polarization distortion of signal in quantum cryptography systems,” Nanosist Fiz. Khim. Mat. 3(3), 92–98 (2012).
29. A. Gaidash, V. I. Egorov, and A. V. Gleim, “Revealing beam-splitting attack in a quantum cryptography system with a photon-number-resolving detector,” J. Opt. Soc. Am. B 33, 1451–1455 (2016).
30. W. W. Peterson and E. J. Weldon, Error-Correcting Codes (MIT Press, Boston, 1972; Mir, Moscow, 1976).
31. J. Mora, W. Amaya, A. Ruiz-Alba, A. Martinez, D. Calvo, V. G. Muñoz, and J. Capmany, “Simultaneous transmission of 20 × 2 WDM/SCM-QKD and 4 bidirectional classical channels over a PON,” Opt. Express 20, 16358–16365 (2012).
32. J. Capmany and C. R. Fernandez-Pousa, “Impact of third-order intermodulation on the performance of subcarrier multiplexed quantum key distribution,” J. Lightwave Technol. 29, 3061–3069 (2011).