ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535, 621.375

Changes in the spectral characteristics of quartz-glass plates when they are processed with laser-induced plasma

For Russian citation (Opticheskii Zhurnal):

Коваль В.В., Сергеев М.М., Заколдаев Р.А., Костюк Г.К. Изменения спектральных характеристик пластин кварцевого стекла при обработке лазерно-индуцированной микроплазмой // Оптический журнал. 2017. Т. 84. № 7. С. 22–29.

 

Koval V.V., Sergeev M.M., Zakoldaev R.A., Kostyuk G.K. Changes in the spectral characteristics of quartz-glass plates when they are processed with laser-induced plasma [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 7. P. 22–29.

For citation (Journal of Optical Technology):

V. V. Koval’, M. M. Sergeev, R. A. Zakoldaev, and G. K. Kostyuk, "Changes in the spectral characteristics of quartz-glass plates when they are processed with laser-induced plasma," Journal of Optical Technology. 84(7), 447-452 (2017). https://doi.org/10.1364/JOT.84.000447

Abstract:

This paper presents the results of studies of changes in the transmittance and luminescence spectra of quartz-glass plates caused by surface-processing the plates with laser-induced microplasma. The recorded changes are probably caused by a change in the surface roughness and by the microgeometry of the resulting relief, as well as by possible penetration of the target material into the material being processed. The paper presents the results of studies on removing the changes by using wet laser cleaning, heat treatment in an oven, and chemical processing in a nitric acid solution. It is shown that the changes in the transmission and luminescence spectra can be minimized or entirely eliminated by using wet laser cleaning.

Keywords:

quartz glass, laser-induced microplasma, cluster ablation of glass, phase diffraction elements

Acknowledgements:

The research was supported by the Ministry of Education and Science of the Russian Federation (Minobrnauka) (14.587.21.0037) (RFMEFI58717X0037).

OCIS codes: 350.3390, 160.6030, 170.6280

References:

1. J. Zhang, K. Sugioka, and K. Midorikawa, “High-speed machining of glass materials by laser-induced plasma-assisted ablation using a 532-nm laser,” Appl. Phys. A 67(4), 499–501 (1998).
2. P. Lorenz, M. Ehrhardt, and K. Zimmer, “Laser-induced front-side and back-side etching of fused silica with KrF and XeF excimer lasers using metallic absorber layers: a comparison,” Appl. Surf. Sci. 258 (24), 9742–9746 (2012).
3. B. Hopp, T. Smausz, and M. Bereznai, “Processing of transparent materials using visible nanosecond laser pulses,” Appl. Phys. A 87(1), 77–79 (2007).
4. J.-Y. Cheng, M.-H. Yen, C.-W. Wei, Y.-C. Chuang, and T.-H. Young, “Crack-free direct-writing on glass using a low-power UV laser in the manufacture of a microfluidic chip,” J. Micromech. Microeng. 15(6), 1147–1156 (2005).
5. B. Hopp, T. Smausz, T. Csizmadia, C. Vass, T. Csako, and G. Szabo, “Comparative study of different indirect laser-based methods developed for microprocessing of transparent materials,” J. Laser Micro/Nanoeng. 5(1), 80–85 (2010).
6. M. M. Sergeev, G. K. Kostyuk, P. A. Zakoldaev, and E. B. Yayakovlev, “Laser passivation of porous glass for protection from chemical degradation and aging,” Fizikokhim. Poverkh. Zash. Mat. 51(3), 314–322 (2015).
7. Y. Hanada, K. Sugioka, H. Takase, H. Takai, I. Miyamoto, and K. Midorikawa, “Selective metallization of polyimide by laser-induced plasma-assisted ablation (LIPAA),” Appl. Phys. A 80(1), 111–115 (2005).
8. P. Lorenz, F. Frost, M. Ehrhardt, and K. Zimmer, “Laser-induced fabrication of randomly distributed nanostructures in fused silica surfaces,” Appl. Phys. A 111(4), 1025–1030 (2013).
9. G. Kostyuk, M. Sergeev, R. Zakoldaev, and E. Yakovlev, “Fast microstructuring of silica glasses surface by NIR laser radiation,” Opt. Lasers Eng. 68, 16–24 (2015).
10. H.-K. Choi, M. S. Ahsan, D. Yoo, I.-B. Sohn, Y.-C. Noh, J.-T. Kim, D. Jung, J.-H. Kim, and H.-M. Kang, “Formation of cylindrical micro-lens array on fused silica glass surface using CO 2 -laser-assisted reshaping technique,” Opt. Laser Technol. 75, 63–70 (2015).
11. R. A. Zakoldaev, G. K. Kostyuk, V. V. Koval, M. M. Sergeev, V. S. Rymkevich, and E. B. Yakovlev, “Microlens array fabrication on fused silica by LIBBH technology with CO 2 -laser smoothing,” J. Instrum. Eng. 59(5), 400–406 (2016).
12. Y. Hanada, K. Sugioka, Y. Gomi, H. Yamaoka, O. Otsuki, I. Miyamoto, and K. Midorikawa, “Development of practical system for laser-induced plasma-assisted ablation (LIPAA) for micromachining of glass materials,” Appl. Phys. A 79(4–6), 1001–1003 (2004).
13. P. Nageswara Rao and D. Kunzru, “Fabrication of microchannels on stainless steel by wet chemical etching,” J. Micromech. Microeng. 17(12), N99–N106 (2007).
14. C. Pan, K. Chen, B. Liu, L. Ren, J. Wang, Q. Hu, L. Liang, J. Zhou, and L. Jiang, “Fabrication of micro-texture channel on glass by laser-induced plasma-assisted ablation and chemical corrosion for microfluidic devices,” J. Mater. Process. Technol. 240, 314–323 (2017).
15. G. K. Kostyuk, R. A. Zakoldaev, V. V. Koval, M. M. Sergeev, and V. S. Rymkevich, “Laser microplasma as a tool to fabricate phase grating applied for laser beam splitting,” Opt. Lasers Eng. 92, 63–69 (2017).
16. V. P. Veı˘ko and A. A. Samokhvalov, “Study of the optoacoustic response to the laser ablation of solids by the radiation of a fiber laser under a thin layer of liquid,” J. Opt. Technol. 81(5), 294–297 (2014) [Opt. Zh. 81(5), 88–92 (2014)].
17. R. Zakoldaev, M. Sergeev, G. Kostyuk, and V. Veiko, “Laser-induced black-body heating (LIBBH) as a method for glass surface modification,” J. Laser Micro/Nanoeng. 10(1), 15–19 (2015).
18. G. Kostyuk, R. Zakoldaev, M. Sergeev, and V. Veiko, “Laser-induced glass surface structuring by LIBBH technology,” Opt. Quantum Electron. 48(4), 1–8 (2016).
19. G. Kostyuk, R. Zakoldaev, M. Sergeev, and E. Yakovlev, “Microlens array fabrication on fused silica influenced by NIR laser,” Appl. Phys. B 122(4), 1–8 (2016).
20. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1998).
21. D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO 2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
22. V. Veı˘ko, T. Mutin, V. Smirnov, E. Shakhno, and S. Batishche, “Laser cleaning of metal surfaces: physical processes and application,” Izv. Vyssh. Uchebn. Zaved. 51(4), 30–36 (2008).
23. H. O. Pierson, Handbook of Carbon, Graphite, Diamonds and Fullerenes: Processing, Properties and Applications (William Andrew Publishing, Oxford, 1993).