УДК: 621.373.535
Influence of multi-pulse action on the evolution of silicon microrelief under femtosecond laser irradiation
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Гук И.В., Кузьмин Е.В., Шандыбина Г.Д., Яковлев Е.Б., Дюкин Р.В., Кулагин В.С. Влияние многоимпульсного воздействия на эволюцию микрорельефа кремния при лазерном фемтосекундном облучении // Оптический журнал. 2017. Т. 84. № 7. С. 41–46.
Guk I.V., Kuzmin E.V., Shandybina G.D., Yakovlev E.B., Dyukin R.V., Kulagin V.S. Influence of multi-pulse action on the evolution of silicon microrelief under femtosecond laser irradiation [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 7. P. 41–46.
I. V. Guk, E. V. Kuz’min, G. D. Shandybina, E. B. Yakovlev, R. V. Dyukin, and V. S. Kulagin, "Influence of multi-pulse action on the evolution of silicon microrelief under femtosecond laser irradiation," Journal of Optical Technology. 84(7), 462-466 (2017). https://doi.org/10.1364/JOT.84.000462
The results of numerical modeling of the process of multi-pulse femtosecond laser photoexcitation and heating of monocrystalline silicon are presented. It is shown that starting from a certain level of irradiance at pulse repetition rates of 10–1000 Hz, the structural changes in the surface that occur between pulses influence the spatiotemporal distribution of the electron plasma in the near-surface layer of the semiconductor at the time of irradiation with a subsequent pulse and thus accumulate, forming a stable surface microstructure in the irradiated region. A mechanism is proposed for the formation of a two-dimensional periodic microrelief on a silicon surface, which is based on a change in the type of a surface excited by electromagnetic waves with an increasing number of irradiating femtosecond pulses.
femtosecond laser pulses, monocrystalline silicon, surface laser microstructuring, surface plasmon resonance, optical multilayer structures
OCIS codes: 280.6680, 320.7120
References:1. K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3, e149 (2014).
2. K. C. Phillips, H. H. Gandhi, E. Mazur, and S. K. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photon. 7(4), 684–712 (2015).
3. E. G. Gamaly, L. Rapp, V. Roppo, S. Juodkazis, and A. V. Rode, “Generation of high energy density by fs-laser-induced confined microexplosion,” New J. Phys. 15, 025018 (2013).
4. T. J.-Y. Derrien, T. E. Itina, R. Torres, T. Sarnet, and M. Sentis, “Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon,” J. Appl. Phys. 114, 083104 (2013).
5. G. A. Martsinovsky, G. D. Shandybina, Yu. S. Demen’teva, R. V. Dyukin, S. V. Zabotnov, L. A. Golovan’, and P. K. Kashkarov, “Generation of surface electromagnetic waves in semiconductors under the action of femtosecond laser pulses,” Semiconductors 43(10), 1298–1304 (2009) [Fiz. Tekh. Poluprovodn. 43(10), 1339–1345 (2009)].
6. O. Varlamova, M. Bounhalli, and J. Reif, “Influence of irradiation dose on laser-induced surface nanostructures on silicon,” Appl. Surf. Sci. 278, 62–66 (2013).
7. W. Zhang, G. Cheng, and Q. Feng, “Unclassical ripple patterns in single-crystal silicon produced by femtosecond laser irradiation,” Appl. Surf. Sci. 263, 436–439 (2012).
8. M. Guillermin, F. Garrelie, N. Sanner, E. Audouard, and H. Soder, “Single- and multi-pulse formation of surface structures under static femtosecond irradiation,” Appl. Surf. Sci. 253, 8075–8079 (2007).
9. E. J. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser induced periodic surface structure. I. Theory,” Phys. Rev. B 27, 1141–1154 (1983).
10. J. Bonse, A. Rosenfeld, and J. Kruger, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys. 106, 104910 (2009).
11. Y. Ma, J. Si, X. Sun, T. Chen, and X. Hou, “Progressive evolution of silicon surface microstructures via femtosecond laser irradiation in ambient air,” Appl. Surf. Sci. 313, 905–910 (2014).
12. E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, Y. N. Novoselov, L. V. Selezne, and D. V. Sinitsyn, “Topological evolution of self-induced silicon nanogratings during prolonged femtosecond laser irradiation,” Appl. Phys. A 104, 701–705 (2011).
13. R. V. Dyukin, G. A. Martsinovskiy, O. N. Sergaeva, G. D. Shandybina, V. V. Svirina, and E. B. Yakovlev, “Interaction of femtosecond laser pulses with solids: electron/phonon/plasmon dynamics,” in Laser Pulses—Theory, Technology, and Applications, I. Peshko, ed. (InTech, Rijeka, Croatia, 2012), pp. 197–218.
14. I. Guk, G. Shandybina, and E. Yakovlev, “Influence of accumulation effects on heating of silicon surface by femtosecond laser pulses,” Appl. Surf. Sci. 353, 851–855 (2015).
15. I. V. Guk, G. A. Martsinovsky, G. D. Shandybina, and E. B. Yakovlev, “Simulation of the absorption of a femtosecond laser pulse in crystalline silicon,” Semiconductors 47(12), 1616–1620 (2013) [Fiz. Tekh. Poluprovodn. 47(12), 1642–1646 (2013)].
16. I. V. Guk, G. D. Shandybina, and E. B. Yakovlev, “Role of the heat accumulation effect in the multipulse modes of the femtosecond laser microstructuring of silicon,” Semiconductors 50(5), 694–698 (2016) [Fiz. Tekh. Poluprovodn. 50(5), 706–710 (2016)].
17. I. A. Ostapenko, S. V. Zabotnov, G. D. Shandybina, L. A. Golovan’, A. V. Chervyakov, Y. V. Ryabchikov, E. B. Yakovlev, V. Y. Timoshenko, and P. K. Kashkarov, “Micro- and nanostructuring of the surface of crystalline silicon under the action of femtosecond laser pulses,” Izv. Ross. Akad. Nauk, Ser. Fiz. 70(9), 1315–1317 (2006).
18. B. A. Snopok, “Theory and application of surface plasmon resonance for analytical purposes,” Teor. Eksp. Khim. 48(5), 265–285 (2012).
19. M. N. Libenson, Laser-Induced Optical and Thermal Processes in Condensed Media and Their Mutual Influence (Nauka, St. Petersburg, 2007).
20. J. Bonse and J. Kruger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108, 034903 (2010).
21. V. V. Bazhenov, A. M. Bonch-Bruevich, M. N. Libenson, and V. S. Makin, “Interference of surface electromagnetic waves in connection with periodic structures formed during intense illumination of a semiconductor surface,” Sov. Tech. Phys. Lett. 10(24), 642–645 (1984) [Pis’ma Zh. Tekh. Fiz. 10(24), 1520–1526 (1984)].