УДК: 644.2, 535.37
Controlling the optical properties of a Cd1−xZnxS phosphor that contains pairs of dopant metals based on copper, silver, and manganese
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Сергеева Н.М., Богданов С.П. Управление оптическими свойствами люминофора Cd1–xZnxS, содержащего пары легирующих металлов на основе меди, серебра, марганца // Оптический журнал. 2017. Т. 84. № 7. С. 70–79.
Sergeeva N.M., Bogdanov S.P. Controlling the optical properties of a Cd1−xZnxS phosphor that contains pairs of dopant metals based on copper, silver, and manganese [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 7. P. 70–79.
N. M. Sergeeva and S. P. Bogdanov, "Controlling the optical properties of a Cd1−xZnxS phosphor that contains pairs of dopant metals based on copper, silver, and manganese," Journal of Optical Technology. 84(7), 486-494 (2017). https://doi.org/10.1364/JOT.84.000486
This paper discusses the structure parameters and the optical and luminescence properties of Cd1−xZnxS phosphor—a solid solution based on zinc and cadmium sulfides—that contains one of the following pairs of dopant ions: copper and silver, manganese and silver, or manganese and copper. The synthesis and simultaneous doping of the phosphor are carried out by colloid chemistry. It is shown that doping with two ions in combination decreases the crystallographic symmetry of the cubic lattice of the matrix solid solution. Broadening of the photoluminescence spectrum of the doped solid solutions is observed in the long-wavelength region. Doping the phosphor with copper paired with silver makes it possible to obtain white luminescence and to increase its emission intensity by a factor of 2 at wavelength 500 nm by comparison with the undoped solid solution.
colloid method, white luminescence, manganese, copper, silver, solid solution, lattice distortion
Acknowledgements:The authors are grateful to N. M. Schmidt for attention and critical comments, to E. A. Konstantinova for investigating the doped solid solution by EPR, and to E. M. Polnikova for sincerely striving to help.
OCIS codes: 160.4760, 250.5230, 340.0340
References:1. Z. Zhou, J. Shi, P. Wu, and L. Guo, “Configuration dependence of the properties of Cd1−xZnxS solid solutions by first-principles calculations,” Phys. Status Solidi B 251(3), 655–660 (2014).
2. Z. Zhou, J. Shi, P. Wu, and L. Guo, “A first-principles investigation on microscopic atom distribution and configuration-averaged properties in Cd1−xZnxS solid solutions,” Chem. Phys. Chem. 15(14), 3125–3132 (2014).
3. V. G. Korsakov, M. M. Sychev, and V. V. Bakhmet’ev, “Synthesis and properties of nanodisperse II–VI semiconductors and nanophosphors: review,” Kondens. Sredy Mezhfaznye Granitsy 14(1) 41–52 (2012).
4. S. Sh. Shakhmalieva, “Synthesis and physicochemical studies of the electroluminescence materials based on zinc sulfide,” Candidate’s dissertation (Sev. Kav. GTU, Stavropol’, 2001).
5. A. F. Golota, V. M. Ishchenko, and S. M. Tishchenko, “New variable-field zinc-sulfide-based electrolumininophores doped with copper and manganese,” Vestn. Stav. Gos. Univ. (63), 107–113 (2009).
6. V. V. Bakhmet’ev, K. A. Ogurtsov, M. M. Sychev, A. A. Kotomin, S. A. Dushenok, A. S. Kozlov, and G. Xu, “The effect of impact-wave processing of zinc sulfide on the properties of the ZnS:Cu, Mn phosphor,” Zh. Prikl. Khim. 85(6), 849–855 (2012).
7. N. Karar, M. Jayaswal, S. K. Halder, and H. Chander, “Photoluminescence shifts in silver-doped nanocrystalline Cd 1−xZnxS,” J. Alloys Compd. 436, 61–64 (2007).
8. R. Sethi, L. Kumar, P. K. Sharma, and A. Pandey, “Tunable visible emission of Ag-doped CdZnS alloy quantum dots,” Nanoscale Res. Lett. 5(1), 96–102 (2009).
9. W. Zhang, X. Zhou, and X. Zhong, “One-pot noninjection synthesis of Cu-doped Zn(x)Cd( 1−x)S nanocrystals with emission color tunable over entire visible spectrum,” J. Inorg. Chem. 51(6), 3579–3587 (2012).
10. P. Kubelka and F. Munk, “Ein Beitrag zur Optik der Farbanstriche,” Z. Tech. Phys. 12, 593–599 (1931).
11. S. P. Bogdanov, X-ray Structural Analysis of Carbonaceous Materials (SPbGTI (TU), St. Petersburg, 2013).
12. P. Scherrer, “Bestimmung der Grosse und inneren Struktur von Kolloidteilchen mittels Rontgenstrahlen,” Nachr. Ges. Wiss. Goettingen. Math.-Phys. Kl. 2, 98–100 (1918).
13. B. F. Ormont, Introduction to Physical Chemistry and Crystal Chemistry of Semiconductors: Textbook for Students of Technical Schools, V. M. Glazova, ed. (Vyssh. Shkola, Moscow, 1982).
14. S. P. Bogdanov, “Influence of boron impurities on the crystal structure of cubic nitride,” Glass Phys. Chem. 34(2), 218–223 (2008) [Fiz. Khim. Stekla 34(2), 281–288 (2008)].
15. L. Wang, X. Xu, and X. Yuan, “Preparation and photoluminescent properties of doped nanoparticles of ZnS by solid state reaction,” J. Lumin. 130, 137–140 (2010).
16. J. B. Nelson and D. P. Riley, “An experimental investigation of extrapolation methods in the derivation of accurate unit-cell dimensions of crystals,” Proc. Phys. Soc., London 57(3), 160–177 (1945).
17. L. M. Kovba and V. K. Trunov, X-ray Phase Analysis (MGU, Moscow, 1976).
18. E. A. Konstantinova, EPR-Spectroscopy of Disordered and Low-Dimension Solid Structures (MGU, Moscow, 2002).
19. X. Lu, C. Chen, S. Husurianto, and M. D. Koretsky, “Effect of chloride on the photoluminescence of ZnS:Mn thin films,” J. Appl. Phys. 85(8), 4154–4159 (1999).
20. M. V. Vlasova, N. G. Kakaze, A. M. Kalinchenko, and A. S. Litovchenko, Radiospectroscopic Properties of Inorganic Materials (Naukova Dumka, Kiev, 1987).
21. R. Kripal and A. K. Gupta, “EPR and optical studies of ZnS:Mn nanoparticles,” Chalcogenide Lett. 7(3), 203–209 (2010).
22. W. Q. Peng, G. W. Cong, S. C. Qu, and Z. G. Wang, “Synthesis and photoluminescence of ZnS:Cu nanoparticles,” Opt. Mater. 29, 313–317 (2006).
23. N. P. Golubeva, A. V. Lavrov, and M. V. Fok, “Concerning luminescence centers of ZnS and ZnS-O, Cu,” Tr. Fiz. Inst. Akad. Nauk SSSR 138, 157–165 (1983).
24. N. P. Golubeva and M. V. Fok, “Oxygen-bonded luminescence of zinc sulfide doped with copper and silver,” Zh. Prikl. Spektrosk. 47(1), 35–40 (1987).
25. L. A. Gromov, “Study of the process of forming zinc sulfide phosphors,” Doctoral dissertation (LTI im. Lensoveta, Leningrad, 1973).
26. N. K. Morozova, I. A. Karetnikov, V. V. Blinov, and E. M. Gavrishchuk, “A study of luminescence centers related to copper and oxygen in ZnSe,” Semiconductors 35(1) 24–32 (2001) [Fiz. Tekh. Poluprovodn. 35(1) 25–33 (2001)].
27. V. D. Khoruzhi, “Dynamics of the luminescence spectra of ZnS-Cu and ZnS-Ag crystal phosphors in atomic hydrogen,” Izv. Ross. Akad. Nauk Ser. Fiz. 72(7), 978–982 (2008).
28. Z. P. Ilyukhina, “Fabricating zinc sulfide crystals and the nature of blue luminescence centers of self-doped ZnS,” in Collection of Scientific Transactions of the Physics Institute of the Academy of Sciences: Luminescence and Nonlinear Optics, D. V. Skobel’tsina, ed. (Nauka, Moscow, 1972), vol. 59.
29. M. F. Bulany, B. A. Polezhaev, and T. A. Prokof’ev, “The nature of manganese luminescence centers in zinc sulfide,” Semiconductors 32(6), 603–605 (1998) [Fiz. Tekh. Poluprovodn. 32(6), 673–675 (1998)].
30. T. B. Chistyakova, V. V. Bakhmet’ev, Yu. I. Shlyago, P. I. Komarov, and A. A. Dembski, “Software complex for the automatic calculation of the color indices of a luminophore,” in Materials of the Scientific Conference Devoted to the 182nd Anniversary of the Formation of SPbGTI (TU), St. Petersburg, 25–26 November 2010.