УДК: 535.3
Development of narrow bandpass filters based on cross cavities for the terahertz frequency range
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Соболева В.Ю., Гомон Д.А., Седых Е.А., Баля В.К., Ходзицкий М.К. Разработка узкополосных фильтров на основе крестообразных резонаторов для терагерцового диапазона частот // Оптический журнал. 2017. Т. 84. № 8. С. 23–26.
Soboleva V.Yu., Gomon D.A., Sedykh E.A., Balya V.K., Khodzitskiy M.K. Development of narrow bandpass filters based on cross cavities for the terahertz frequency range [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 8. P. 23–26.
V. Yu. Soboleva, D. A. Gomon, E. A. Sedykh, V. K. Balya, and M. K. Khodzitskiĭ, "Development of narrow bandpass filters based on cross cavities for the terahertz frequency range," Journal of Optical Technology. 84(8), 521-524 (2017). https://doi.org/10.1364/JOT.84.000521
A narrow bandpass terahertz filter based on cross cavities was developed for four frequencies. The geometric parameters of the cavities for each resonant frequency were calculated, and the filter transmission spectra for the calculated parameters were obtained numerically, analytically, and experimentally. The simulation was carried out in the COMSOL Multiphysics modeling environment using the finite element method. A model of the oscillator circuit was used for the analytical construction of spectra. An experimental sample was fabricated and an experiment was performed using pulse terahertz spectroscopy. The possibility of controlling the spectral characteristics of the filter using two methods—mechanically and by changing the angle of incidence of radiation on the plane of the filter—was studied.
frequency-selective surface, metamaterials, terahertz radiation, bandpass filter, cross cavities, terahertz spectroscopy
OCIS codes: 230.0230, 120.2440
References:1. J. Liu and L. Fan, “Determination of Xa21 gene content in genetically modified sugar beet by terahertz spectroscopy in combination with chemometric methods,” J. Opt. Technol. 83(10), 627–631 (2016) [Opt. Zh. 83(10), 60–65 (2016)].
2. A. Lisauskas, T. Löffler, and H. G. Roskos, “Photonic terahertz technology,” Semicond. Sci. Technol. 20(7) (2005).
3. G. P. Williams, “Filling the THz gap—high power sources and applications,” Rep. Progr. Phys. 69(2), 301–326 (2006).
4. R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7(1), 37–55 (1967).
5. D. W. Porterfield, J. L. Hesler, R. Densing, E. R. Mueller, T. W. Crowe, and R. M. Weikle II, “Resonant metal-mesh bandpass filters for the far infrared,” Appl. Opt. 33(25), 6046–6052 (1994).
6. S. A. Kuznetsov, V. V. Kubarev, P. V. Kalinin, B. G. Goldenberg, V. S. Eliseev, E. V. Petrova, and N. A. Vinokurov, “Development of metal mesh based on quasi-optical selective components and their applications in high-power experiments at Novosibirsk terahertz FEL,” in Proceedings of FEL (2007), pp. 89–92.
7. Y. Ma, A. Khalid, T. D. Drysdale, and D. R. S. Cumming, “Direct fabrication of terahertz optical devices on low-absorption polymer substrates,” Opt. Lett. 34(10), 1555–1557 (2009).
8. L. A. Page, E. S. Cheng, B. Golubovic, J. Gundersen, and S. S. Meyer, “Millimeter-submillimeter wavelength filter system,” Appl. Opt. 33(1), 11–23 (1994).
9. H. A. Smith, M. Rebbert, and O. Sternberg, “Designer infrared filters using stacked metal lattices,” Appl. Phys. Lett. 82(21), 3605–3607 (2003).
10. K. D. Möller, J. B. Warren, J. B. Heaney, and C. Kotecki, “Cross-shaped bandpass filters for the near- and mid-infrared wavelength regions,” Appl. Opt. 35(31), 6210–6215 (1996).
11. A. M. Melo, A. L. Gobbi, M. H. O. Piazzetta, and A. M. Da Silva, “Cross-shaped terahertz metal mesh filters: historical review and results,” Adv. Opt. Technol. 2012, 1–12 (2012).
12. V. G. Bespalov, A. A. Gorodetskiı˘, I. Yu. Denisyuk, S. A. Kozlov, V. N. Krylov, G. V. Lukomskiı˘, N. V. Petrov, and S. É. Putilin, “Methods of generating superbroadband terahertz pulses with femtosecond lasers,” J. Opt. Technol. 75(10), 636–642 (2008) [Opt. Zh. 75(10), 34–41 (2008)].
13. V. K. Balya, “Development of thin film micro-optics by the method of laser ablation of polymeric materials,” Author’s abstract of the dissertation of the candidate of phys.-math. sciences (NIU ITMO, St. Petersburg, 2014).