УДК: 621.382, 621.383.5
Optimizing the parameters of a system consisting of a photosensitive IR element based on multilayer structures with quantum wells and a silicon photoelectric multiplexer
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Демьяненко М.А., Козлов А.И., Овсюк В.Н. Оптимизация параметров системы «инфракрасный фоточувствительный элемент на основе многослойных структур с квантовыми ямами — кремниевый мультиплексор фотосигналов» // Оптический журнал. 2017. Т. 84. № 9. С. 59–65.
Demiyanenko M.A., Kozlov A.I., Ovsyuk V.N. Optimizing the parameters of a system consisting of a photosensitive IR element based on multilayer structures with quantum wells and a silicon photoelectric multiplexer [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 9. P. 59–65.
M. A. Dem’yanenko, A. I. Kozlov, and V. N. Ovsyuk, "Optimizing the parameters of a system consisting of a photosensitive IR element based on multilayer structures with quantum wells and a silicon photoelectric multiplexer," Journal of Optical Technology. 84(9), 625-630 (2017). https://doi.org/10.1364/JOT.84.000625
This paper discusses the design and process principles involved in optimizing the noise-equivalent temperature difference of photodetectors based on multilayer structures with quantum wells in wide ranges of the structural and process limitations of silicon multiplexers, CMOS-technology design norms, and the parameters of photosensitive elements for the long-wavelength IR spectral region.
silicon multiplexer, integrated circuit for detection of photoelectric signals, multielement infrared photodetector, photodetector based on multilayer structures with quantum wells
Acknowledgements:The authors express gratitude to Academician A. L. Aseev for useful discussions of the results presented in this article and to A. P. Savchenko for numerous discussions of the data presented on the parameters of QWMS-based PDs.
OCIS codes: 040.3060, 110.3080, 130.5990
References:1. A. Rogal’skiı˘, Infrared Detectors (Nauka, Novosibirsk, 2003).
2. “Cooled infrared imaging products,” SOFRADIR, http://www.sofradirec.com/products-cooled.asp.
3. “Infrared and visible FPAs,” Teledyne, http://www.teledyne-si.com/products-and-services/imaging-sensors/infrared-and-visible-fpas.
4. V. V. Vasil’ev, A. I. Kozlov, I. V. Marchishin, Yu. G. Sidorov, and M. V. Yakushev, “Analysis of structural-technological limitations in silicon circuits for reading photodiode signals in the IR region,” J. Opt. Technol. 81(7), 392–396 (2014) [Opt. Zh. 81(7), 39–45 (2014)].
5. M. A. Dem’yanenko, D. G. Esaev, A. I. Kozlov, I. V. Marchishin, and V. N. Ovsyuk, “Study of technological limitations in silicon signal-readout circuits of IR photodetectors based on multilayer structures with quantum wells,” Avtometriya 51(2), 110–118 (2015).
6. V. V. Vasil’ev, S. A. Dvoretskiı˘, V. S. Varavin, N. N. Mikhaı˘lov, V. G. Remesnik, Yu. G. Sidorov, A. O. Suslyakov, and A. L. Aseev, “An array photodetector based on a varizone isotropic p–p junction in HgCdTe layers grown by molecular-beam epitaxy,” Avtometriya 43(4), 17–24 (2007).
7. A. I. Kozlov, I. V. Marchishin, V. N. Ovsyuk, and A. L. Aseev, “A series of silicon multiplexers for HgCdTe photodiodes of the 816-μm spectral range,” J. Opt. Technol. 75(3), 187–193 (2008) [Opt. Zh. 75(3), 60–67 (2008)].
8. E. Mottin, P. Pantigny, and R. Boch, “An improved architecture of IR FPA readout circuits,” Proc. SPIE 3061, 119–128 (1997).
9. L. J. Kozlowski, R. B. Bailey, S. C. Cabelli, D. E. Cooper, G. McComas, K. Vural, and W. E. Tennant, “640 × 480 PACE HgCdTe FPA,” Proc. SPIE 1735, 163–174 (1992).
10. A. I. Kozlov, I. V. Marchishin, V. N. Ovsyuk, and V. V. Shashkin, “Silicon multiplexers for multielement IR photodetectors,” Avtometriya 41(3), 88–99 (2005).
11. A. I. Kozlov, I. V. Marchishin, and V. N. Ovsyuk, “Silicon multiplexers 320 × 256 for IR photodetectors based on HgCdTe diodes,” Avtometriya 43(4), 74–82 (2007).
12. A. I. Kozlov, “Analysis of the construction principles silicon multiplexer circuits for multielement IR photodetectors,” Avtometriya 46(1), 118–129 (2010).
13. A. I. Kozlov, “Design features and some implementations of silicon multiplexers for IR photodetectors,” J. Opt. Technol. 77(7), 421–428 (2010) [Opt. Zh. 77(7), 19–29 (2010)].
14. A. I. Kozlov and I. V. Marchishin, “Commercially oriented developments of silicon multiplexers for multielement IR photodetectors,” Avtometriya 48(4), 60–72 (2012).
15. D. D. Karnaushenko, I. I. Li, and V. G. Polovinkin, “Infrared photodetector devices based on a photodiode–direct-injection-device system,” J. Opt. Technol. 77(9), 548–553 (2010) [Opt. Zh. 77(9), 30–36 (2010)].
16. V. N. Ovsyuk, Yu. G. Sidorov, V. V. Vasil’ev, and V. V. Shashkin, “A 128 × 128 photodetector array based on HgCdTe layers and multilayer heterostructures with GaAs/AlGaAs quantum wells,” Prikl. Fiz. (5), 70–79 (2000).
17. M. A. Dem’yanenko, A. I. Kozlov, A. G. Klimenko, I. V. Marchishin, V. N. Ovsyuk, A. P. Savchenko, A. I. Toropov, and V. V. Shashkin, “IR photodetector arrays based on multilayer heterostructures with GaAs/AlGaAs quantum wells,” Prikl. Fiz. (6), 94–100 (2000).
18. D. G. Esaev, I. V. Marchishin, V. N. Ovsyuk, A. P. Savchenko, V. A. Fateev, V. V. Shashkin, A. V. Sukharev, A. A. Padalitsa, I. V. Budkin, and A. A. Marmalyuk, “Infrared photodetector based on multilayer GaAs/AlGaAs heterostructures with quantum wells,” Avtometriya 43(4), 112–118 (2007).
19. “CMOS process technologies,” X-FAB, http://www.xfab.com/en/technology/cmos/.
20. “Information on AO Angstrem products,” AO Angstrem-T, http://www.angstrem.ru/ru/manufacture/kristalnoe-proizvodstvo and http://www.angstrem-t.com/technology/.
21. AO Mikron, http://www.mikron.ru/services/foundry/.
22. R. E. DeWames, J. M. Arias, L. J. Kozlowski, and G. M. Williams, “An assessment of HgCdTe and GaAs/GaAlAs technologies for LWIR infrared imagers,” Proc. SPIE 1735, 2–16 (1992).
23. L. K. J. Vandamme, X. Li, and D. Rigaud, “1/f noise in MOS devices, mobility or number fluctuations?” IEEE Trans. Electron Devices 41(11), 1936–1945 (1994).
24. M. Valenza, A. Hoffmann, D. Sodini, A. Laigle, F. Martinez, and D. Rigaud, “Overview of the impact of downscaling technology on 1/f noise in p-MOSFETs to 90 nm,” IEE Proc. Circuits Devices Syst. 151(2), 102–110 (2004).
25. N. A. Valisheva, D. G. Esaev, and A. I. Toropov, “IR photodetector module based on multilayer GaAs/AlGaAs heterostructures with quantum wells,” in Abstracts of Reports of the Conference and Young Scientists’ School on Crucial Problems of the Physics of Semiconductor Structures, Novosibirsk (2014), p. 66.