DOI: 10.17586/1023-5086-2018-85-01-12-16
УДК: 538.958
Thermal line broadening of totally symmetric vibrations in the Raman scattering spectra of LiNO3–LiClO4, Na2CO3–Na2SO4, and KNO3–KNO2 binary systems
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Алиев А.Р., Ахмедов И.Р., Какагасанов М.Г., Алиев З.А. Температурное уширение линий полносимметричных колебаний в спектрах комбинационного рассеяния бинарных систем LiNO3-LiClO4, Na2CO3-Na2SO4, KNO3-KNO2 // Оптический журнал. 2018. Т. 85. № 1. С. 12–16. http://doi.org/10.17586/1023-5086-2018-85-01-12-16
Aliev A.R., Akhmedov I.R., Kakagasanov M.G., Aliev Z.A. Thermal line broadening of totally symmetric vibrations in the Raman scattering spectra of LiNO3–LiClO4, Na2CO3–Na2SO4, and KNO3–KNO2 binary systems [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 1. P. 12–16. http://doi.org/10.17586/1023-5086-2018-85-01-12-16
A. R. Aliev, I. R. Akhmedov, M. G. Kakagasanov, and Z. A. Aliev, "Thermal line broadening of totally symmetric vibrations in the Raman scattering spectra of LiNO3–LiClO4, Na2CO3–Na2SO4, and KNO3–KNO2 binary systems," Journal of Optical Technology. 85(1), 8-11 (2018). https://doi.org/10.1364/JOT.85.000008
The molecular relaxation processes in the solid binary systems of LiNO3–LiClO4, Na2CO3–Na2SO4, and KNO3–KNO2 were studied by Raman spectroscopy. It was found that the relaxation times of the ν1(A) vibrations of the NO3− and CO32− anions in the LiNO3–LiClO4, Na2CO3–Na2SO4, and KNO3–KNO2 systems are less than those in LiNO3, Na2CO3, and KNO3, respectively. It is shown that the increase in the relaxation rate is explained by the presence of an additional relaxation mechanism of vibrationally excited states in the system. This mechanism is associated with the excitation of a vibration of another anion (ClO4−, SO42−, NO2−) and the creation of a lattice phonon. It is established that the conditions for the realization of such a relaxation mechanism are that the frequency difference of these vibrations must correspond to a region with a sufficiently high density of states in the phonon spectrum.
Raman scattering, vibrational spectra, ionic crystals, binary system
Acknowledgements:The research was supported by the Russian Foundation for Basic Research (RFBR) (project No. 17-02-00920_a).
OCIS codes: 300.6390, 300.6450
References:1. Yu. K. Voron’ko, A. A. Sobol’, and V. E. Shukshin, “Monoclinic-tetragonal phase transition in hafnium oxide: a high-temperature Raman scattering investigation,” Sov. Phys. Solid State 49(10), 1963–1968 (2007) [Fiz. Tverd. Tela 49(10), 1871–1875 (2007)].
2. A. V. Rakov, “Investigation of the rotational Brownian motion of molecules of substances in the condensed state by the Raman scattering and infrared absorption,” Trudy FIAN USSR 27, 111–149 (1964).
3. K. A. Valiev and E. N. Ivanov, “Rotational Brownian motion,” Sov. Phys. Usp. 16(1) 1–16 (1973) [Phys.-Usp. 109(1), 31–64 (1973)].
4. V. E. Pogorelov, A. I. Lizengevich, I. I. Kondilenko, and G. P. Buyan, “Vibrational relaxation in condensed media,” Sov. Phys. Usp. 22(4) 270–282 (1973) [Phys.-Usp. 127(4), 683–704 (1979)].
5. S. A. Kirillov, “Vibrational spectroscopy in studies of the dynamics of ionic melts,” in Dynamic Properties of Molecules and Condensed Systems, A. N. Lazarev, ed. (Nauka, Leningrad, 1988), pp. 190–227.
6. D. W. Oxtoby, “Hydrodynamic theory of vibrations dephasing in liquids,” J. Chem. Phys. 70(6), 2605–2610 (1978).
7. K. A. Valiev, “On the theory of energy dissipation processes of molecular oscillations in liquids,” J. Exp. Theor. Phys. 13(6), 1287–1290 (1961) [Zh. Eksp. Teor. Fiz. 40(6), 1832–1837 (1961)].
8. K. A. Valiev, “On the theory of line widths in vibrational and Raman spectra of molecules in dipole liquids,” Opt. Spectrosc. 11, 253 (1961) [Opt. Spektrosk. 11(4), 465–470 (1961)].
9. K. Sarka and S. A. Kirillov, “Line broadening in the vibrational spectra of liquids due to ion-dipole interactions,” Ukr. Fiz. Zh. 26(7), 1118–1125 (1981).
10. M. A. Ivanov, L. B. Kvashina, and M. A. Krivoglaz, “Spectral distribution of localized vibrations,” Sov. Phys. Solid State 7, 1652–1659 (1965) [Fiz. Tverd. Tela 7(7), 2047-2057 (1965)].
11. M. M. Gafurov and A. R. Aliev, “Mechanism of relaxation of vibrational excitations of NO 3− in crystals and molten nitrates,” Rasplavy 2, 41–46 (2000).
12. A. R. Aliev and M. M. Gafurov, “Vibrational relaxation in binary salt systems,” Russ. J. Phys. Chem. A 75(3), 418–421 (2001) [Zh. Fiz. Khim. 75(3), 477–480 (2001)].
13. A. R. Aliev, M. M. Gafurov, and I. R. Akhmedov, “Intermolecular phonon decay mechanism of vibrational relaxation in binary salt systems,” Chem. Phys. Lett. 359(3–4), 262–266 (2002).
14. A. R. Aliev, I. R. Akhmedov, M. G. Kakagasanov, Z. A. Aliev, M. M. Gafurov, K. Sh. Rabadanov, and A. M. Amirov, “Inelastic intermolecular exchange of vibrational quanta and relaxation of vibrationally excited states in solid binary systems,” Sov. Phys. Solid State 59(4), 752–757 (2017) [Fiz. Tverd. Tela 59(4), 736–740 (2017)].
15. M. H. Brooker and G. N. Papatheodorou, “Vibrational spectroscopy of molten salt and related glasses and vapors,” in Advances in Molten Salt Chemistry, G. Mamantov, ed. (Elsevier, Amsterdam, 1983), vol. 5, pp. 26–184.
16. K. Kohlrausch, Raman Spectra (IL, Moscow, 1952).
17. L. M. Sverdlov, M. A. Kovner, and E. P. Krainov, Vibrational Spectra of Polyatomic Molecules (Nauka, Moscow, 1970).
18. C. J. Pouchert, The Aldrich Library of Infrared Spectra, 2nd ed. (Aldrich Chemical Company, 1978).
19. D. V. Korabel’nikov and Yu. N. Zhuravlev, “Theoretical study of the thermodynamic properties of lithium, sodium, and potassium nitrates,” Sov. Phys. Solid State 55(8), 1765–1772 (2013) [Fiz. Tverd. Tela 55(8), 1651–1658 (2013)].
20. D. V. Korabel’nikov and Yu. N. Zhuravlev, “Ab initio investigations of the elastic properties of chlorates and perchlorates,” Sov. Phys. Solid State 58(6), 1166–1171 (2016) [Fiz. Tverd. Tela 58(6), 1129–1134 (2016)].
21. O. V. Golovko, “Electronic structure, chemical bonds and physical and chemical properties of alkali metal sulfates,” Author’s abstract of Ph.D. dissertation (Kemerovo State University, Kemerovo, 2009).
22. V. N. Belomestnykh and E. P. Tesleva, “Polymorphic transformations of the orientational order-disorder type. Part II. Nitrogen-containing ionomolecular sodium crystals,” Izv. Tomsk. Politekh. Inst. 307(6), 11–17 (2004).
23. D. W. James and W. H. Leong, “Vibrational spectra of single crystals of group I nitrates,” J. Chem. Phys. 49(11), 5089–5096 (1968).
24. W. H. Leong and D. W. James, “Vibrational spectra of anhydrous lithium perchlorate in crystalline and molten states,” Aust. J. Chem. 22(3), 499–503 (1969).
25. M. M. Gafurov and A. Z. Gadzhiev, “Investigation of the orientational mobility of nitrite ions in a crystal of KNO 2 -I by infrared spectroscopy,” Sov. Phys. Solid State 28(1–4), 364 (1986) [Fiz. Tverd. Tela 28(2), 644–646 (1986)].