DOI: 10.17586/1023-5086-2018-85-01-65-70
УДК: 535.015
Suppression of parasitic modes in a YAG:Nd slab laser using selective coating
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Нгуен В.Б., Губанова Л.А., Хоанг Т.Л. Подавление паразитных мод внутри YAG:Nd пластинчатого лазера селективным покрытием // Оптический журнал. 2018. Т. 85. № 1. С. 65–70. http://doi.org/10.17586/1023-5086-2018-85-01-65-70
Nguyen V.B., Gubanova L.A., Hoang T.L. Suppression of parasitic modes in a YAG:Nd slab laser using selective coating [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 1. P. 65–70. http://doi.org/10.17586/1023-5086-2018-85-01-65-70
V. B. Nguyen, L. A. Gubanova, and T. L. Hoang, "Suppression of parasitic modes in a YAG:Nd slab laser using selective coating," Journal of Optical Technology. 85(1), 53-57 (2018). https://doi.org/10.1364/JOT.85.000053
The use of selective coating for suppression of parasitic modes in a slab laser with a YAG:Nd active element is investigated. Various designs of selective coatings are analyzed and optimized, based on the phenomenon of total internal reflection. The possibility of implementing a selective coating based on thin-film materials titanium, silicon dioxide, and aluminum oxide is demonstrated.
selective coating, slab laser, parasitic radiation, total internal reflection, p-component
Acknowledgements:The research was supported by the Ministry of Education and Science of the Russian Federation (Minobrnauka)16.1651.2017/4.6.
OCIS codes: 310.6805, 140.3460
References:1. J. S. Shin, Y. H. Cha, Y. Kim, G. Lim, B. H. Cha, H. C. Lee, S. Kim, and H. T. Kim, “Design of pump beam delivering optical system and doped YAG length to minimize the wavefront distortion in a high-power Nd:YAG zigzag slab laser,” Opt. Eng. 56(1), 1–6 (2017).
2. B. Tang, T. Zhou, D. Wang, and M. Li, “Optical distortions in end-pumped zigzag slab lasers,” Appl. Opt. 54(10), 2693–2702 (2015).
3. D. C. Brown, D. P. Benfey, W. J. Gehm, D. H. Holmes, and K. K. Lee, “Parasitic oscillations and amplified spontaneous emission in face-pumped total internal reflection lasers,” Proc. SPIE 736, 74–83 (1987).
4. A. K. Sridharan, S. Saraf, S. Sinha, and R. L. Byer, “Zigzag slabs for solid-state laser amplifiers: batch fabrication and parasitic oscillation suppression,” Appl. Opt. 45(14), 3340–3351 (2006).
5. A. K. Sridharan, S. Saraf, and R. L. Byer, “Yb:YAG master oscillator power amplifier for remote wind sensing,” Appl. Opt. 46(30), 7552–7565 (2007).
6. D. A. Arkhipov, V. I. Venglyuk, V. A. Derevyanko, M. S. Egorov, Y. A. Rezunkov, and V. V. Stepanov, “Optimization of operating characteristics of a solid-state laser with diode pumping for space applications,” Nauchno-Tekh. Vestn. Inf. Tekhnol. Mekh. Opt. 15(6), 1000–1007 (2015).
7. V. B. Nguyen and L. A. Gubanova, “Narrow-band optical filters as polarizers for near-IR wavelengths,” J. Opt. Technol. 83(12), 734–737 (2016) [Opt. Zh. 83(12), 31–35 (2016)].
8. É. S. Putilin and L. A. Gubanova, Optical Coatings (Lan’, St. Petersburg, 2016).
9. A. M. Efimov, Optical Properties of Materials and Mechanisms of Their Formation (SPbGU ITMO, St. Petersburg, 2008).