DOI: 10.17586/1023-5086-2018-85-11-101-105
УДК: 535.36
Inconsistency between light scattering in magnesium aluminosilicate glass-ceramics and their nanostructure
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Шепилов М.П., Дымшиц О.С., Алексеева И.П., Жилин А.А., Запалова С.С., Вербо В.А. Несоответствие светорассеяния в стеклокристаллических материалах магниевоалюмосиликатной системы их наноструктуре // Оптический журнал. 2018. Т. 85. № 11. С. 101–105. http://doi.org/10.17586/1023-5086-2018-85-11-101-105
Shepilov M.P., Dymshits O.S., Alekseeva I.P., Zhilin A.A., Zapalova S.S., Verbo V.A. Inconsistency between light scattering in magnesium aluminosilicate glass-ceramics and their nanostructure [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 11. P. 101–105. http://doi.org/10.17586/1023-5086-2018-85-11-101-105
M. P. Shepilov, O. S. Dymshits, I. P. Alekseeva, A. A. Zhilin, S. S. Zapalova, and V. A. Verbo, "Inconsistency between light scattering in magnesium aluminosilicate glass-ceramics and their nanostructure," Journal of Optical Technology. 85(11), 738-741 (2018). https://doi.org/10.1364/JOT.85.000738
The nanostructure and optical spectra of magnesium aluminosilicate glass-ceramics containing titanium dioxide nucleation sites for bulk crystallization were studied. It is shown that, on the basis of information on the nanostructure, it is impossible to theoretically describe the nature of the observed light scattering within the framework of the usual concepts of light scattering by nanostructured glass-ceramic materials. It is suggested that the predominant cause of scattering in the studied materials is the microheterogeneity of the structure.
crystallization of glasses, glass-ceramics, structure, light scattering
Acknowledgements:The research was supported by the Russian Foundation for Basic Research (RFBR) (16-03-01130-a).
OCIS codes: 160.4760, 160.4670, 290.0290, 290.7050, 160.4236
References:1. V. Marghussian, Nano-glass Ceramics: Processing, Properties and Applications (Elsever Inc., Amsterdam, 2015).
2. O. Dymshits, M. Shepilov, and A. Zhilin, “Transparent glass-ceramics for optical applications,” MRS Bull. 42(3), 200–205 (2017).
3. G. H. Beall and D. A. Duke, “Transparent glass-ceramics,” J. Mater. Sci. 4(4), 340–352 (1969).
4. A. V. Bortkevich, M. L. Varshavchik, and O. S. Dymshits, “Investigation of spectrophotometric characteristics of a scatterer based on diffuse reflecting Sitall,” J. Opt. Technol. 64(8), 795–796 (1997) [Opt. Zh. 64(8), 111–112 (1997)].
5. T. I. Chuvaeva, O. S. Dymshits, V. I. Petrov, M. Ya. Tsenter, A. V. Shashkin, A. A. Zhilin, and V. V. Golubkov, “Low-frequency Raman scattering of magnesium aluminosilicate glasses and glass-ceramics,” J. Non-Cryst. Solids 282(2–3), 306–316 (2001).
6. H. Lipson and H. Steeple, Interpretation of X-ray Powder Patterns (McMillan, London, 1970).
7. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1998).
8. I. P. Alekseeva, O. S. Dymshits, A. A. Zhilin, S. S. Zapalova, M. P. Shepilov, V. V. Golubkov, A. E. Kalmykov, and A. V. Myacoedov, “Anomalies in light scattering by glass–ceramics of the zinc aluminum silicate system, caused by low nickel oxide doping,” J. Opt. Technol. 81(12), 729–734 (2014) [Opt. Zh. 81(12), 35–42 (2014)].
9. M. P. Shepilov, O. S. Dymshits, A. A. Zhilin, and S. S. Zapalova, “On the measurements of scattering coefficient of nanostructured glass-ceramics by a serial spectrophotometer,” Measurement 95, 306–316 (2017).
10. M. P. Shepilov, O. S. Dymshits, A. A. Zhilin, V. V. Golubkov, A. E. Kalmykov, A. V. Myasoedov, A. A. Hubetsov, and S. S. Zapalova, “Effect of low NiO doping on anomalous light scattering in zinc aluminosilicate glass-ceramics,” J. Non-Cryst. Solids 473, 152–169 (2017).
11. M. P. Shepilov, O. S. Dymshits, and A. A. Zhilin, “Light scattering in glass-ceramics: revision of the concept,” J. Opt. Soc. Am. B 35(7), 1717–1724 (2018).
12. P. A. Loiko, O. S. Dymshits, N. A. Skoptsov, A. M. Malyarevich, A. A. Zhilin, I. P. Alekseeva, M. Y. Tsenter, K. V. Bogdanov, X. Mateos, and K. V. Yumashev, “Crystallization and nonlinear optical properties of transparent glass-ceramics with Co:Mg(Al, Ga) 2 O 4 nanocrystals for saturable absorbers of lasers at 1.6–1.7 μm,” J. Phys. Chem. Solids 103, 132–141 (2017).
13. V. V. Golubkov, O. S. Dymshits, A. A. Zhilin, T. I. Chuvaeva, and A. V. Shashkin, “On the phase separation and crystallization of glasses in the MgO–Al 2 O 3–SiO 2–TiO 2 system,” Glass Phys. Chem. 29(3), 254–266 (2003).
14. N. S. Andreev, “Scattering of visible light by glasses undergoing phase separation and homogenization,” J. Non-Cryst. Solids 30(2), 99–126 (1978).
15. M. Kerker, The Scattering of Light (Academic, New York, 1969).
16. A. F. Wright, A. N. Fitch, J. B. Hayter, and B. E. F. Fender, “Nucleation and crystallization of cordierite-TiO 2 glass ceramic: Part 1. Small angle neutron scattering measurements and simulations,” Phys. Chem. Glasses 26(4), 113–118 (1985).
17. M. P. Shepilov, “The problem of theoretically describing anomalous light scattering by liquating glasses, caused by interparticle interference,” J. Opt. Technol. 70(12), 882–887 (2003) [Opt. Zh. 70(12), 61–67 (2003)].
18. M. P. Shepilov, “On the problem of theoretical description of anomalous light scattering by phase separated glasses,” Phys. Chem. Glasses 46(2), 173–177 (2005).
19. M. P. Shepilov, “Asymmetry parameter for anomalous light scattering in nanostructured glasses,” Opt. Lett. 42(21), 4513–4516 (2017).
20. T. Berthier, V. M. Fokin, and E. D. Zanotto, “New large grain, highly crystalline, transparent glass-ceramics,” J. Non-Cryst. Solids 354(15–16), 1721–1730 (2008).