ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2018-85-11-58-64

УДК: 004.932

Object recognition based on structural description of images in three-dimensional space

For Russian citation (Opticheskii Zhurnal):

Пономарев С.В., Луцив В.Р., Малышев И.А. Распознавание объектов на основе структурного описания изображений в трехмерном пространстве // Оптический журнал. 2018. Т. 85. № 11. С. 58–64. http://doi.org/10.17586/1023-5086-2018-85-11-58-64

 

Ponomarev S.V., Lutsiv V.R., Malyshev I.A. Object recognition based on structural description of images in three-dimensional space [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 11. P. 58–64. http://doi.org/10.17586/1023-5086-2018-85-11-58-64

For citation (Journal of Optical Technology):

S. V. Ponomarev, V. R. Lutsiv, and I. A. Malyshev, "Object recognition based on structural description of images in three-dimensional space," Journal of Optical Technology. 85(11), 703-708 (2018). https://doi.org/10.1364/JOT.85.000703

Abstract:

A method for object recognition based on the use of a structural description of images of three-dimensional scenes is proposed, and it is experimentally compared with existing analogues. A quantitative assessment of the recognition accuracy and speed of the studied methods is presented. Methods for detecting key points and building image descriptors in three-dimensional space are studied. The algorithm developed here can be used to address issues with mobile robot and unmanned aerial vehicle navigation under the conditions characterized by a high degree of a priori uncertainty of the scene.

Keywords:

structural description, object recognition, three-dimensional space

OCIS codes: 150.1135

References:

1. Y. Li, N. Snavely, and D. P. Huttenlocher, “Location recognition using prioritized feature matching,” in Proceedings of the European Conference on Computer Vision (ECCV), Crete, Greece (2010), pp. 1–14.
2. V. Lutsiv and I. Malyshev, “Image structural analysis in the tasks of automatic navigation of unmanned vehicles and inspection of Earth surface,” Proc. SPIE 8897, 88970F (2013).
3. C. Chen, C. Huang, and C. Yeh, “A survey of 2D and 3D image matching in industrial object alignment,” Smart Science 4(3), 1–10 (2016).
4. Y. Guo, M. Bennamoun, F. Sohel, M. Lu, and J. Wan, “3D object recognition in cluttered scenes with local surface features: a survey,” IEEE Trans. Pattern Anal. Mach. Intell. 36, 2270–2287 (2014).
5. F. Endres, J. Hess, J. Sturm, D. Cremers, and W. Burgard, “3D mapping with an RGB-D camera,” IEEE Trans. Rob. 30(1), 1–11 (2014).
6. R. Cupec, R. Grbić, and E. K. Nyarko, “Survey of state-of-the-art methods for object recognition in 3D point clouds,” Technical Report (Josip Juraj Strossmayer University of Osijek, Osijek, Croatia, 2016).
7. J. Konecny, M. Prauzek, P. Kromer, and P. Musilek, “Novel point-to-point scan matching algorithm based on cross-correlation,” Mobile Inf. Syst. 2016, 6463945 (2016).
8. V. R. Lutsiv, I. A. Malyshev, and A. S. Potapov, “Hierarchical structural matching algorithms for registration of aerospace images,” Proc. SPIE 5238, 164–175 (2003).
9. S. V. Ponomarev, V. R. Lutsiv, and I. A. Malyshev, “Automatic structural matching of 3D image data,” Proc. SPIE 9649, 96490M (2015).
10. A. Aldoma, F. Tombari, J. Prankl, A. Richtsfeld, L. D. Stefano, and M. Vincze, “Multimodal cue integration through hypotheses verification for RGB-D object recognition and 6DOF pose estimation,” in IEEE International Conference on Robotics and Automation, Karlsruhe (2013), pp. 2104–2111.
11. L. Bo, X. Ren, and D. Fox, “Unsupervised feature learning for RGB-D based object recognition,” in Experimental Robotics, Springer (2013), pp. 387–402.
12. R. Socher, B. Huval, B. Bath, C. D. Manning, and A. Y. Ng, “Convolutional-recursive deep learning for 3D object classification,” in Proceedings of the 25th International Conference on Neural Information Processing Systems (NIPS), Nevada (2012), pp. 665–673.
13. R. Salakhutdinov and G. E. Hinton, “Deep Boltzmann machines,” in Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics, Florida (2009), pp. 448–455.
14. B. Steder, R. Bogdan, R. Kurt, and W. Knolige, “NARF: 3D range image features for object recognition,” in Workshop on Defining and Solving Realistic Perception Problems in Personal Robotics at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Taipei, Taiwan (2010).
15. A. Aldoma, F. Tombari, R. B. Rusu, and M. Vincze, “OUR-CVFH—oriented, unique and repeatable clustered viewpoint feature histogram for object recognition and 6DOF pose estimation,” in DAGM/OAGM 2012: Pattern Recognition (2012), pp. 113–122.
16. R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu, “Fast 3D recognition and pose using the viewpoint feature histogram,” in Proceedings ofIEEE/RSJ 2010 International Conference on Intelligent Robots and Systems (IROS) (2010), pp. 2155–2162.
17. A. Aldoma, M. Vincze, N. Blodow, D. Gossow, S. Gedikli, R. Rusu, and G. Bradski, “CAD-model recognition and 6DOF pose estimation using 3D cues,” in Proceedings of IEEE International Conference on Computer Vision (2011), pp. 585–592.
18. V. R. Lutsiv, “Object-independent approach to the structural analysis of images,” J. Opt. Technol. 75(11), 708–714 (2008) [Opt. Zh. 75(11), 26–34 (2008)].
19. K. Lai, L. Bo, X. Ren, and D. Fox, “A large-scale hierarchical multi-view RGB-D object dataset,” in Proceedings of IEEE International Conference on Robotics and Automation (2011), pp. 1817–1824.