DOI: 10.17586/1023-5086-2018-85-12-03-07
УДК: 535.34
Three-photon absorption due to indirect interband transitions in crystals
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Елисеев К.А., Перлин Е.Ю. Трёхфотонное поглощение на непрямых межзонных переходах в кристаллах // Оптический журнал. 2018. Т. 85. № 12. С. 3–7. http://doi.org/10.17586/1023-5086-2018-85-12-03-07
Eliseev K.A., Perlin E.Yu. Three-photon absorption due to indirect interband transitions in crystals [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 12. P. 3–7. http://doi.org/10.17586/1023-5086-2018-85-12-03-07
K. A. Eliseev and E. Yu. Perlin, "Three-photon absorption due to indirect interband transitions in crystals," Journal of Optical Technology. 85(12), 742-745 (2018). https://doi.org/10.1364/JOT.85.000742
An approximate analytical expression is obtained for the probability of three-photon indirect interband transitions involving longitudinal acoustic phonons in crystals. These probabilities are compared with the probabilities of direct three- and four-photon interband transitions.
multi-photon absorption, indirect interband transitions, electron-phonon interaction, four-order processes
Acknowledgements:OCIS codes: 300.1030, 190.4400, 190.4720
References:1. M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. H. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectric,” Phys. Rev. Lett. 80, 4076 (1998).
2. A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B 61, 11437 (2000).
3. O. Efimov, S. Juodkazis, and H. Misawa, “Intrinsic single- and multiple-pulse laser-induced damage in silicate glasses in the femtosecond-to-nanosecond region,” Phys. Rev. A 69, 042903 (2004).
4. D. M. Simanovskii, H. A. Schwettman, H. Lee, and A. J. Welch, “Midinfrared optical breakdown in transparent dielectrics,” Phys. Rev. Lett. 91, 107601 (2003).
5. D. Seo, J. M. Gregory, L. C. Feldman, N. H. Tolk, and P. I. Cohen, “Multiphoton absorption in germanium using pulsed infrared free-electron laser radiation,” Phys. Rev. B 83, 195203 (2011).
6. I. M. Catalano, A. Cingolani, and A. Minafra, “Multiphoton transitions at the direct and indirect band gaps of gallium phosphide,” Solid State Commun. 16(4), 417–420 (1975).
7. A. R. Hassan, “Indirect two-photon transitions in solids with a magnetic field,” J. Phys. C: Solid State Phys. 9, 2383–2394 (1976).
8. I. M. Catalano, A. Cingolani, and M. Lepore, “Direct and indirect multi-photon transitions in GaS,” Solid State Commun. 54(1), 87–89 (1985).
9. Sh. Efendiev, V. Gavryushin, G. Raciukaitis, G. Puzonas, A. Kazlauskas, N. Darvishov, and S. Shakhdgan, “Two-photon spectroscopy of PbMoO 4 single crystals indirect interband transitions,” Phys. Status Solidi B 156, 697–704 (1989).
10. S. B. Kapatkar, S. S. Kubakaddi, and B. G. Mulimani, “Phonon-assisted two-photon magnetoabsorption in an indirect band gap semiconductor quantum well,” Phys. Status Solidi B 197(1), 51–60 (1996).
11. H. Garcia and R. Kalyanaraman, “Phonon-assisted two-photon absorption in the presence of a dc-field: the nonlinear Franz-Keldysh effect in indirect gap semiconductors,” J. Phys. B: At. Mol. Opt. Phys. 39, 2737–2746 (2006).
12. D. Sharma, P. Gaur, B. P. Malik, N. Singh, and A. Gaur, “Intensity dependent nonlinear absorption in direct and indirect band gap crystals under nano and picosecond z-scan,” Opt. Photon. J. 2, 98–104 (2012).
13. E. Yu. Perlin, K. A. Eliseev, É. G. Idrisov, and Ya. T. Khalilov, “Nonlinear absorption of femtosecond light pulses accompanying two-photon resonance in bulk crystals and nanostructures,” J. Opt. Technol. 78(9), 563–569 (2011) [Opt. Zh. 78(9), 3–12 (2011)].
14. E. Yu. Perlin, K. A. Eliseev, I. D. Idrisov, and Ya. T. Khalilov, “Nonlinear absorption of femtosecond light pulses under conditions of multiphoton resonances in solids,” Opt. Spectrosc. 112(6), 850–856 (2012) [Opt. Spektrosk. 112(6), 920–927 (2012)].
15. M. O. Osipova and E. Yu. Perlin, “Two-photon absorption of quasi-steady-state radiation and supershort light pulses in broad-band semiconductors,” J. Opt. Technol. 83(6), 329–331 (2016) [Opt. Zh. 83(6), 3–6 (2016)].
16. K. A. Eliseev and E. Yu. Perlin, “Absorption of femtosecond light pulses due to indirect interband transitions in crystals,” Opt. Spectrosc. 119(6), 911–917 (2015) [Opt. Spektrosk. 119(6), 895–905 (2015)].
17. E. Yu. Perlin, M. A. Bondarev, and M. O. Zhukova, “Multiphoton intraband absorption of femtosecond light pulses in crystals. I. General relationships,” Opt. Spectrosc. 123(4), 578–582 (2017) [Opt. Spektrosk. 123(4), 566–570 (2017)].
18. E. Yu. Perlin, M. A. Bondarev, and M. O. Zhukova, “Multiphoton intraband absorption of femtosecond light pulses in crystals. II. Processes with the participation of acoustic and optical phonons,” Opt. Spectrosc. 123(4), 583–586 (2017) [Opt. Spektrosk. 123(4), 571–574 (2017)].
19. M. O. Osipova and E. Yu. Perlin, “Absorption of light by free electrons in semiconductors. I. Processes involving longitudinal optical phonons,” J. Opt. Technol. 83(11), 648–651 (2016) [Opt. Zh. 83(11), 3–7 (2016)].
20. M. O. Zhukova and E. Yu. Perlin, “Absorption of light by free electrons in semiconductors. II. Processes involving acoustic phonons,” J. Opt. Technol. 84(10), 651–653 (2017) [Opt. Zh. 84(10), 3–6 (2017)].
21. V. A. Kovarskii and E. Yu. Perlin, “Multi-photon interband optical transitions in crystals,” Phys. Status Solidi B 45(1), 47–56 (1971).