ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2018-85-12-77-82

УДК: 544.023.2

Effect of composition nonstoichiometry on the optical properties of titanium dioxide films

For Russian citation (Opticheskii Zhurnal):

Новопашин В.В., Скворцов Л.А., Скворцова М.И. Влияние нестехиометрии состава на оптические свойства плёнок диоксида титана // Оптический журнал. 2018. Т. 85. № 12. С. 77–82. http://doi.org/10.17586/1023-5086-2018-85-12-77-82

 

Novopashin V.V., Skvortsov L.A., Skvortsova M.I. Effect of composition nonstoichiometry on the optical properties of titanium dioxide films [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 12. P. 77–82. http://doi.org/10.17586/1023-5086-2018-85-12-77-82

For citation (Journal of Optical Technology):

V. V. Novopashin, L. A. Skvortsov, and M. I. Skvortsova, "Effect of composition nonstoichiometry on the optical properties of titanium dioxide films," Journal of Optical Technology. 85(12), 803-807 (2018). https://doi.org/10.1364/JOT.85.000803

Abstract:

It is established that the mechanisms of light absorption in titanium dioxide films differ in the visible and near-infrared spectral ranges. In the near-infrared range of the spectrum, the contribution to the absorption coefficient made by the intrinsic defects associated with the nonstoichiometry of the film composition is dominant. At the same time, in the visible spectral range, the main contribution to absorption is most likely made by external defects, namely, foreign inclusions and impurities contained in the starting material for film deposition. It is shown that the introduction of monitoring of the photothermal signal from the pellets of the raw material makes it possible to minimize and stabilize the absorption in the visible region of the spectrum.

Keywords:

titanium dioxide, reactive thermal evaporation, absorption, composition stoichiometry, photothermal radiometry

OCIS codes: 140.0140; 310.1860

References:

1. L. I. Maissel and R. Glang, Handbook of Thin Film Technology (McGraw-Hill, New York, 1970).
2. K. N. Rao, “Influence of deposition parameters on optical properties of TiO 2 films,” Opt. Eng. 41, 2357–2365 (2002).
3. G. M. Zverev, S. A. Kolyadin, E. A. Levchuk, and L. A. Skvortsov, “Investigation of the damage to dielectric films by laser radiation,” Sov. J. Quantum Electron. 7(2), 227–230 (1977) [Kvant. Elektron. 4(2), 413–419 (1977)].
4. H. Küster and J. Ebert, “Activated reactive evaporation of TiO 2 layers and their absorption indices,” Thin Solid Films 70(1), 43–47 (1980).
5. K. R. Narasimha, “Influence of substrate temperature on optical absorption in TiO 2 films,” Proc. SPIE 1019, 49–55 (1989).
6. H. Küster and J. Ebert, “Activated reactive evaporation of TiO 2 layers and their absorption indices,” Thin Solid Films 70(1), 43–47 (1980).
7. L. A. Skvortsov and M. Kirillov, “Measurement of the body surface temperature by the method of laser photothermal radiometry,” Quantum Electron. 33(12), 1113–1117 (2003).
8. P. E. Nordal and S. O. Kanstad, “Photothermal radiometry,” Phys. Scr. 20, 659–662 (1979).
9. G. M. Zverev and L. A. Skvortsov, “Damage of dielectric coatings by CW laser radiation,” Izv. Akad. Nauk SSSR Ser. Fiz. 45, 644–646 (1981).
10. R. Santos and L. C. M. Miranda, “Theory of the photothermal radiometry with solids,” J. Appl. Phys. 52, 4194–4198 (1981).
11. V. N. Lopatkin, O. E. Sidoryuk, and L. A. Skvortsov, “Laser modulation photothermal radiometer—a new method for measuring weak absorption in bulk materials and coatings,” Sov. J. Quantum Electron. 15(2), 216–220 (1985) [Kvant. Elektron. 12(2), 339–346 (1985)].

12. A. Mandelis and Y. Riopel, “Laser infrared photothermal radiometry of electronic solids: principles and applications to industrial semiconductor Si wafers,” J. Vac. Sci. Technol. A 18(2), 705–708 (2000).
13. A. Emeline, A. Salinaro, V. Ryabchuk, and N. Serpone, “Photoinduced processes in heterogeneous nanosystems. From photoexcitation to interfacial chemical transformations,” Int. J. Photoenergy 3, 1–16 (2001).
14. H. Hoffmann, S. Martin, W. Choi, and D. Bahnemann, “Environmental applications of semiconductor photocatalysis,” Chem. Rev. 95(1), 69–96 (1995).
15. G. M. Zverev, O. E. Sidoryuk, and L. A. Skvortsov, “Influence of water adsorption processes on the optical strength of dielectric titanium dioxide coatings,” Sov. J. Quantum Electron. 11(10), 1393–1395 (1981) [Kvant. Elektron. 8(10), 2274–2276 (1981)].