DOI: 10.17586/1023-5086-2018-85-03-27-31
УДК: 539.211
Electronic states of glassy carbon in the near ultraviolet region of the spectrum
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Бехтерев А.Н., Рыжов А.М. Электронные состояния стеклоуглерода в ближней ультрафиолетовой области спектра // Оптический журнал. 2018. Т. 85. № 3. С. 27–31. http://doi.org/10.17586/1023-5086-2018-85-03-27-31
Bekhterev A.N., Ryzhov A.M. Electronic states of glassy carbon in the near ultraviolet region of the spectrum [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 3. P. 27–31. http://doi.org/10.17586/1023-5086-2018-85-03-27-31
A. N. Bekhterev and A. M. Ryzhov, "Electronic states of glassy carbon in the near ultraviolet region of the spectrum," Journal of Optical Technology. 85(3), 144-147 (2018). https://doi.org/10.1364/JOT.85.000144
Experimentally observed selective features in the diffuse reflection spectra of sp2-condensed carbon samples in the near ultraviolet region of the spectra are compared with theoretical calculations of the optical spectra of similar objects. Good agreement was observed between these results.
electronic states, nanocarbon, glassy carbon, diffuse reflectance
OCIS codes: 160.4236, 300.6540, 260.7190
References:1. E. M. Baı˘tinger, Electronic Structure of Condensed Carbon (Ural’sk State University, Sverdlovsk, Russia, 1988).
2. G. P. Vyatkin, Determination of the Character of Hybridization of Valence States of Carbon by Spectroscopic Methods (Chelyabinsk State Technical University, Chelyabinsk, Russia, 1996).
3. V. A. Gubanov, Quantum Solid State Chemistry (Nauka, Moscow, 1984).
4. É. A. Évarestov, Quantum-Chemical Methods in Solid-State Theory (Leningrad State University, Leningrad, 1982).
5. Carbon Molecules and Materials, R. Setton, P. Bernier, and S. Lefrant, eds. (Taylor & Francis, New York, USA, 2002), p. 489.
6. R. C. Tatar and S. Rabii, “Electronic properties of graphite: a unified theoretical study,” Phys. Rev. B 25(6), 4126–4141 (1982).
7. R. Tatar, “Energy band structure of three dimensional graphite,” Synth. Met. 3, 131–138 (1981).
8. R. Saito, “Electronic structure of graphene tubules based on C 60 ,” Phys. Rev. B 46(3), 1804–1811 (1992).
9. J. W. Mintmire, “Are fullerene tubules metallic?” Phys. Rev. Lett. 68(5), 631–634 (1992).
10. V. N. Piskunov, Fullerenes and Nanotubes: Optical Properties and Calculation Methods (Federal State Unitary Enterprise “Russian Federal Nuclear Center—All Russia Scientific Research Institute for Experimental Physics,” Sarov, Russia, 2005).
11. J.-C. Charlier, “Defects in carbon nanotubes,” Acc. Chem. Res. 35(12), 1063–1069 (2002).
12. I. M. Tsidil’kovskiı˘, Band Structure of Semiconductors (Nauka, Moscow, 1978).
13. M. S. Dresselhaus, “Raman spectroscopy of carbon nanotubes,” Phys. Rep. 409, 47–99 (2005).
14. R. Saito, “Trigonal warping effect of carbon nanotubes,” Phys. Rev. B 61, 2981–2990 (2000).
15. J.-C. Charlier and J.-P. Michenaut, “Energetics of multilayered carbon tubules,” Phys. Rev. Lett. 70, 1858 (1993).
16. M. Lambin, “Electronic band structure of multilayered carbon tubules,” Comput. Mater. Sci. 2, 350 (1994).
17. M. A. Pimenta, “Studying disorder in graphite-based systems by Raman spectroscopy,” Phys. Chem. Chem. Phys. 9, 1276–1291 (2007).
18. H. Pan, “Ab initio study of electronic and optical properties of multiwall carbon nanotube structures, made up of a single rolled-up graphite sheet,” Phys. Rev. B 72(8), 085415 (2005).
19. A. N. Bekhterev, “Optical properties and structure of crystalline and amorphous carbon modifications,” Sov. J. Opt. Technol. 53(12), 733–746 (1986) [Opt.-Mekh. Prom-st. 12, 41–52 (1986)].
20. A. N. Bekhterev, Phonon Structure of Condensed Carbon and Nanocarbon (G. I. Nosov FGBOU VO Magnitogorsk State Technical University, Magnitogorsk, Russia, 2016).