DOI: 10.17586/1023-5086-2018-85-03-03-11
УДК: 538.958, 538.971, 539.21, 543.42, 548.4, 54-38
Identifying quasi-free and bound nitrate ions on the surfaces of diamond nanoparticles by IR and x-ray photoelectron spectroscopy
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Осипов В.Ю., Романов Н.М., Шахов Ф.М., Takai K. Идентификация квази-свободных и связанных нитрат-ионов на поверхности алмазных наночастиц методами инфракрасной и рентгеновской фотоэлектронной спектроскопии // Оптический журнал. 2018. Т. 85. № 3. С. 3–11. http://doi.org/10.17586/1023-5086-2018-85-03-03-11
Osipov V.Yu., Romanov N.M., Shakhov F.M., Takai K. Identifying quasi-free and bound nitrate ions on the surfaces of diamond nanoparticles by IR and x-ray photoelectron spectroscopy [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 3. P. 3–11. http://doi.org/10.17586/1023-5086-2018-85-03-03-11
V. Yu. Osipov, N. M. Romanov, F. M. Shakhov, and K. Takai, "Identifying quasi-free and bound nitrate ions on the surfaces of diamond nanoparticles by IR and x-ray photoelectron spectroscopy," Journal of Optical Technology. 85(3), 122-129 (2018). https://doi.org/10.1364/JOT.85.000122
X-ray photoelectron spectroscopy data confirm that the surfaces of detonation-diamond particles contain complexes consisting of nitrate ions bound to surface defects of substitutional nitrogen in the diamond lattice or to structural units of type C(sp3)–NH3+ on the surface. Etching with argon ions easily removes the nitrate-ion complexes from the surface of the detonation diamonds without damaging their crystal lattice. Analysis of a sample’s IR absorption spectra before and after thermal heating at 350°C makes it possible to distinguish on the spectrum two lines (narrow and wide) with close-lying frequencies (1384.9 and 1372 cm−1), caused only by the different degree of bonding of the nitrate ions to underlying surface sites that contain nitrogen in tetrahedral sp3 coordination. The narrow line with higher peak intensity corresponds to an almost quasi-free state of an isolated nitrate ion on the surface of the detonation diamonds in the composition of a complex already damaged during moderate heating or during other low-energy treatments. Detonation-diamond particles with chemisorbed nitrate ions are unique markers that allow themselves to be easily detected in solid deposits of suspensions and solutions.
IR spectroscopy, x-ray photoelectron spectroscopy, surface modification, nitrate ion, binding energy, desorption, etching with argon ions
Acknowledgements:The research was supported by the Russian Foundation for Basic Research (RFBR) (17-52-50004 YaF_a); Hosei University; Japan Society for the Promotion of Science (JSPS) (IF01 No. L17526).
The authors are grateful to Dr. Yoshitomo Harada from Hosei University, Tokyo, Japan for help in obtaining XPES spectra. V. Yu. Osipov thanks Hosei University and the Japanese program JSPS Invitational Fellowship for Research in Japan for collaboration and support. F. M. Shakhov thanks the Hosei International Fund Foreign Scholars Fellowship program for support.
OCIS codes: 300.6340, 240.6670, 240.6675, 300.6560, 160.4236, 350.4990, 280.1545
References:1. A. Vul’ and O. Shenderova, eds., Detonation Nanodiamonds: Science and Applications (Pan Stanford, Singapore, 2014).
2. V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, “The properties and applications of nanodiamonds,” Nat. Nanotechnol. 7(1), 11 (2012).
3. V. Yu. Osipov, A. E. Aleksenskiy, A. I. Shames, A. M. Panich, M. S. Shestakov, and A. Ya. Vul’, “Infrared absorption study of surface functional groups providing chemical modification of nanodiamonds by divalent copper ion complexes,” Diamond Relat. Mater. 20(8), 1234 (2011).
4. I. D. Gridnev, V. Yu. Osipov, A. E. Aleksenskii, A. Ya. Vul’, and T. Enoki, “Combined experimental and DFT study of the chemical binding of copper ions on the surface of nanodiamonds,” Bull. Chem. Soc. Jpn. 87(6), 693 (2014).
5. A. M. Panich, A. I. Shames, N. A. Sergeev, V. Yu. Osipov, A. E. Alexenskiy, and A. Ya. Vul’, “Magnetic resonance study of gadolinium-grafted nanodiamonds,” J. Phys. Chem. C 120(35), 19804 (2016).
6. N. M. Romanov, V. Yu. Osipov, K. Takai, N. Touhara, and Y. Hattori, “Infrared spectroscopic study to determine thermal resistance of the functionalized surface of a detonation nanodiamond,” J. Opt. Technol. 84(10), 654–657 (2017) [Opt. Zh. 84(10), 7–11 (2017)].
7. V. Yu. Dolmatov, I. I. Kulakova, V. Myllymäki, A. Vehanen, A. N. Panova, and A. A. Voznyakovskii, “IR spectra of detonation nanodiamonds modified during the synthesis,” J. Superhard Mater. 36(5), 344 (2014).
8. A. S. Solomatin, R. Yu. Yakovlev, K. M. Korolev, I. I. Kulakova, G. V. Lisichkin, and N. B. Leonidov, “Method of selective final purification of nanodiamond,” Russian Patent No. 2,506,095 (priority December 26, 2012).
9. V. Yu. Osipov and N. M. Romanov, “Infrared absorption of diamond nanoparticles with a surface modified by complexes of nitrate ions,” J. Opt. Technol. 84(5), 285–288 (2017) [Opt. Zh. 84(5), 1–5 (2017)].
10. V. Yu. Osipov, F. M. Shakhov, N. N. Efimov, V. V. Minin, S. V. Kidalov, and A. Ya. Vul’, “Identification of paramagnetic nitrogen centers (P1) in diamond crystallites synthesized via the sintering of detonation nanodiamonds at high pressure and temperature,” Phys. Solid State 59(6), 1146–1153 (2017) [Fiz. Tverd. Tela 59(6), 1125–1132 (2017)].
11. A. I. Shames, V. Yu. Osipov, J. P. Boudou, A. M. Panich, H. J. von Bardeleben, F. Treussart, and A. Ya. Vul’, “Magnetic resonance tracking of fluorescent nanodiamond fabrication,” J. Phys. D: Appl. Phys. 48(15), 155302 (2015).
12. J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, J. Chastain, ed. (Perkin-Elmer Corp., Minnesota, 1992).
13. A. E. Aleksenskiı˘, V. Yu. Osipov, A. Ya. Vul’, B. Ya. Ber, A. B. Smirnov, V. G. Melekhin, G. J. Adriaenssens, and K. Iakoubovskii, “Optical properties of nanodiamond layers,” Phys. Solid State 43(1), 145–153 (2001) [Fiz. Tverd. Tela 43(1), 140–145 (2001)].
14. V. M. Vdovenko, ed., Spectroscopic Methods in the Chemistry of Complex Compounds (Khimiya, LO, Moscow, 1964).
15. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (John Wiley and Sons, New York, 1986).
16. W. V. Smith, P. P. Sorokin, I. L. Gelles, and G. J. Lasher, “Electron-spin resonance of nitrogen donors in diamond,” Phys. Rev. 115(6), 1546 (1959).