DOI: 10.17586/1023-5086-2018-85-03-54-61
УДК: 535-15, 535.4, 681.7.02-04, 681.787
Precision method of monitoring the parameters of the local nanometer-level deviations of an optical component’s surface
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Барышников Н.В., Денисов Д.Г., Карасик В.Е., Абдулкадыров М.А., Игнатов А.Н., Патрикеев В.Е., Семенов А.П., Морозов А.Б., Судариков И.Н., Шаров Ю.А. Высокоточный метод контроля параметров локальных отклонений нанометрового уровня поверхности оптической детали // Оптический журнал. 2018. Т. 85. № 3. С. 54–61. http://doi.org/10.17586/1023-5086-2018-85-03-54-61
Baryshnikov N.V., Denisov D.G., Karasik V.E., Abdulkadyrov M.A., Ignatov A.N., Patrikeev V.E., Semenov A.P., Morozov A.B., Sudarikov I.N., Sharov Yu.A. Precision method of monitoring the parameters of the local nanometer-level deviations of an optical component’s surface [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 3. P. 54–61. http://doi.org/10.17586/1023-5086-2018-85-03-54-61
N. V. Baryshnikov, D. G. Denisov, V. E. Karasik, M. A. Abdulkadyrov, A. N. Ignatov, V. E. Patrikeev, A. P. Semenov, A. B. Morozov, I. N. Sudarikov, and Yu. A. Sharov, "Precision method of monitoring the parameters of the local nanometer-level deviations of an optical component’s surface," Journal of Optical Technology. 85(3), 166-172 (2018). https://doi.org/10.1364/JOT.85.000166
A method of monitoring local nanometer-level deviations of the surfaces of large optical components (elements) from a given profile has been developed, scientifically validated, and experimentally confirmed. The method is based on an algorithm for calculating the objective function—the spectral density of a one-dimensional correlation function in a wide spectral range of spatial frequencies. Theoretical and experimental studies have been made of the nonexcluded systematic and random error components of determining the optimization parameter of the objective function being used—the rms deviation of the local deviations of the surfaces of large optical components from a given profile.
optical monitoring, wave front characteristics, surface profile characteristics, spectral density of correlation function, dynamic interferometry, random error analysis, effect of spectral leakage
OCIS codes: 220.0220, 220.0230, 220.4610, 350.1260
References:1. M. A. Abdulkadyrov, N. S. Dobrikov, A. P. Patrikeev, V. E. Patrikeev, and A. P. Semenov, “Technology for fabricating large, high-accuracy, lightened aspheric mirrors with high stability of the surface shape,” J. Opt. Technol. 81(12), 706–713 (2014) [Opt. Zh. 81(12), 6–15 (2014)].
2. M. A. Abdulkadyrov, S. P. Belousov, A. P. Patrikeev, V. E. Patrikeev, and A. P. Semenov, “Fabricating the optical elements of compound mirrors for large astronomical telescopes,” J. Opt. Technol. 80(4), 214–218 (2013) [Opt. Zh. 80(4), 18–23 (2013)].
3. D. G. Denisov, N. V. Baryshnikov, Ya. V. Gladysheva, V. E. Karasik, A. B. Morozov, and V. E. Patrikeev, “Method of certification monitoring the surface irregularities of optical components based on frequency analysis of the surface profile,” Izmer. Tekh. (2), 15–19 (2017).
4. J. H. Campbell, R. A. Hawley-Fedder, J. A. Menapace, and M. R. Borden, “NIF optical materials and fabrication technologies,” Proc. SPIE 5341, 84–101 (2004).
5. D. G. Denisov, V. E. Karasik, and V. M. Orlov, “Measuring the microroughness parameters of large ground surfaces of optical components by means of laser interferometry,” Metrologiya (9), 15–24 (2009).
6. E. Sidick, “Power spectral density specification and analysis of large optical surfaces,” Proc. SPIE 7390, 73900L (2009).
7. S. G. Alcock, G. D. Ludbrook, T. Owen, and R. Dockree, “Using the power spectral density method to characterise the surface topography of optical surfaces,” Proc. SPIE 7801, 780108 (2010).
8. “Optics and photonics—preparation of drawings for optical elements and systems Part 6: Centering tolerances,” ISO 10110-6:2015 (Vernier, Geneva, Switzerland, 2015).