ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2018-85-03-62-68

100G Silicon optical modulator automatic bias control technology based on nonlinear effect compensation and thermal crosstalk effect compensation

For Russian citation (Opticheskii Zhurnal):

Lei Chen 100G Silicon optical modulator automatic bias control technology based on nonlinear effect compensation and thermal crosstalk effect compensation (Способ автоматической регулировки смещения 100 Гб кремниевого оптического модулятора, основанный на компенсации нелинейных эффектов и перекрестных термических помех) [на англ. яз.] // Оптический журнал. 2018. Т. 85. № 3. С. 62–68. http://doi.org/10.17586/1023-5086-2018-85-03-62-68

 

Lei Chen 100G Silicon optical modulator automatic bias control technology based on nonlinear effect compensation and thermal crosstalk effect compensation (Способ автоматической регулировки смещения 100 Гб кремниевого оптического модулятора, основанный на компенсации нелинейных эффектов и перекрестных термических помех) [in English] // Opticheskii Zhurnal. 2018. V. 85. № 3. P. 62–68. http://doi.org/10.17586/1023-5086-2018-85-03-62-68

For citation (Journal of Optical Technology):

Lei Chen, "100G silicon optical modulator automatic bias control technology based on nonlinear effect compensation and thermal crosstalk effect compensation," Journal of Optical Technology. 85(3), 173-178 (2018). https://doi.org/10.1364/JOT.85.000173

Abstract:

Nonlinear effect and thermal crosstalk effect are two major characteristics of silicon optical modulator different from the LiNbO3 modulator. This paper proposes a new automatic bias control method of 100G double polarization quadrature phase shift keying silicon optical modulator, including automatic bias control technology of nonlinear effect compensation method and thermal crosstalk effect compensation method. The experimental results show that the method can establish the linear relationship between bias voltage and phase of silicon optical modulator. This new technology is proved be feasible and practical by experiments.

Keywords:

coherent optical communication, silicon optical modulator, automatic bias control, nonlinear effect, thermal crosstalk effect

OCIS codes: 060.1660, 060.5060, 190.4420, 190.4870

References:

1. Miller D.A.B. Device requirements for optical interconnects to silicon chips // Proc. IEEE. 2009. V. 97, P. 1166–1185.
2. Benner A.F., Ignatowski M., Kash J.A., Kuchta D.M., and Ritter M.B. Exploitation of optical interconnects in future server architectures // IBM J. Res. Dev. 2005. V. 49. P. 755–775.
3. Li Z., Xiao X., Chu T., Yu Y., and Yu J. Highly efficient optical modulators in silicon for next-generation networks // Proc. SPIE. 2010. V. 11. № 17. P. 120–131.
4. Xu H., Xiao X., Li X., Hu Y., Li Z., Chu T., Yu Y., and Yu J. High speed silicon Mach-Zehnder modulator based on interleaved PN junctions // Opt. Exp. 2011. V. 20. № 14. P. 15093–15099.
5. Chmielak B., Waldow M., Matheisen C., Ripperda C., Bolten J., Wahlbrink T., Nagel M., Merget F., and Kurz H. Pockels effect based fully integrated, strained silicon electro-optic modulator // Opt. Exp. 2011. V. 19. № 18. P. 17212–17219.
6. Shamsa M., Solomon P.M., Jenkins K.A., Balandin A.A., Haensch W. Investigation of thermal crosstalk between SOI FETs by the subthreshold sensing technique // IEEE Trans. Electron Devices ED. 2008. V. 55. № 7. P. 1733–1740.
7. Kawakami H., Yoshida E., and Miyamoto Y. Auto bias control technique based on asymmetric bias dithering for optical QPSK modulation // J. Lightw. Technol. 2012. V. 30. № 7. P. 270–273.
8. Reed G.T., Gardes F.Y., Thomson D., and Lever L. Silicon photonics: Optical modulators // Proc. SPIE. The Internat. Soc. Opt. Eng. 2010. P. 15–17.
9. Salvestrini J.P., Guilbert L., Fontana M., Abarkan M., and Gille S. Analysis and control of the DC drift in LiNbO3-based Mach-Zehnder modulators // J. Lightw. Technol. 2012. V. 29. № 10. P. 1522–1534.
10. Kawakami H., Yoshida E., and Miyamoto Y. Asymmetric dithering technique for bias condition monitoring in optical QPSK modulator // Electron. Lett. 2010. V. 46. № 6. P. 430–431.
11. Kawakami H., Yoshida E., and Miyamoto Y. Auto bias control technique for QPSK modulator with asymmetric bias dithering // in Proc. Optoelectron. Commun. Conf. 2010. P. 458–459.
12. Sekine K., Hasegawa C., Kikuchi N., and Sasaki S. A novel bias control technique for MZ modulator with monitoring power of backward light for advanced modulation formats // in Proc. Opt. Fiber Commun. Conf. Anaheim, CA. 2007. V. 1. P. 451–453.
13. Cho P.S., Khurgin J.B., and Shpantzer I. Closed-loop bias control of optical quadrature modulator // IEEE Photon. Technol. Lett. 2006. V. 18. № 21. P. 2209–2211.
14. Peng W.R., Zhang B., Wu X., Feng K.M., Willner A.E., and Chi S. Compensation for I/Q imbalances and bias deviation of the Mach-Zehnder modulators in direct-detected optical OFDM systems // IEEE Photon. Technol. Lett. 2009. V. 21. № 2. P. 103–105.
15. Cho P.S., Nazarathy M. Bias control for optical OFDM transmitters // IEEE Photon. Technol. Lett. 2010. V. 22. № 14. P. 1030–1032.
16. Yoshida T., Sugihara T., Sawada K., Uto K., and Shimizu K. Automatic bias control for arbitrary optical signal generation by dual-parallel MZM // in Proc. 15th Optoelectron. Commun. Conf. 2011. P. 460–461.
17. Yoshida T., Sugihara T., Uto K., Bessho H., Sawada K., Ishida K., Shimizu K., and Mizuochi T. A study on automatic bias control for arbitrary optical signal generation by dual-parallel Mach-Zehnder modulator // in Proc. 36th Eur. Conf. Opt. Commun. 2010. P. 1–3.