DOI: 10.17586/1023-5086-2018-85-04-12-18
УДК: 543.4, 535.31
Doppler homodyne detection of the velocity of scattering objects based on a semiconductor laser with a fiber channel
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Гордин А.И., Маругин А.В. Допплеровская гомодинная регистрация скорости рассеивающих объектов на базе полупроводникового лазера с волоконным каналом // Оптический журнал. 2018. Т. 85. № 4. С. 12–18. http://doi.org/10.17586/1023-5086-2018-85-04-12-18
Gordin A.I., Marugin A.V. Doppler homodyne detection of the velocity of scattering objects based on a semiconductor laser with a fiber channel [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 4. P. 12–18. http://doi.org/10.17586/1023-5086-2018-85-04-12-18
A. I. Gordin and A. V. Marugin, "Doppler homodyne detection of the velocity of scattering objects based on a semiconductor laser with a fiber channel," Journal of Optical Technology. 85(4), 197-202 (2018). https://doi.org/10.1364/JOT.85.000197
A number of configurations of a Doppler velocimeter based on a semiconductor laser with a fiber channel have been implemented and the main parameters related to the fiber specificity of the outer arm of the optical system were analyzed. The efficiency of a homodyne optical system with a semiconductor laser as a radiation source and a fiber channel in the outer arm of the velocimeter in the velocity range of 0.1–100 mm/s is demonstrated. The maximum signal-to-noise values at the Doppler shift frequency of more than 15–20 dB allow us to conclude that it is possible to implement an effective system for measuring the velocity of scattering objects, provided that there is an additional pre-amplification in the signal processing channel and that the noise excitation of the laser emitter is prevented.
semiconductor laser, Doppler detection, fiber light-guide, external cavity laser, homodyne detection of optical signal, diffuse reflector
OCIS codes: 280.3340, 140.2020, 140.3510, 060.2920
References:1. H.-E. Albrecht, N. Damaschke, M. Borys, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer, New York, 2003).
2. J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22, R35–R66 (2001).
3. C. H. Henry and R. F. Kazarinov, “Instability of semiconductor lasers due to optical feedback from distant reflectors,” IEEE J. Quantum Electron. 22, 294–301 (1986).
4. D. A. Usanov and A. V. Skripal, “Measurement of micro- and nanovibrations and displacements using semiconductor laser autodynes,” Quantum Electron. 41(1), 86–94 (2011) [Kvant. Elektron. 41(1), 86–94 (2011)].
5. E. T. Shimizu, “Directional discrimination in the self-mixing type laser Doppler velocimeter,” Appl. Opt. 26(21), 4541–4544 (1987).
6. P. J. de Groot, G. M. Gallatin, and S. H. Macomber, “Ranging and velocimetry signal generation in a backscatter-modulated laser diode,” Appl. Opt. 27, 4475–4480 (1988).
7. V. I. Krasovskiı˘, I. N. Feofanov, P. I. Ivashkin, and M. A. Kazaryan, “Fiber optic Doppler blood flow velocity sensor,” Nauchno-Tekh. Vedomosti SPbGPU Fiz.-Mat. Nauk 10(1), 64–70 (2017).
8. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16, 347–355 (1980).
9. F. Favre and D. Le Guen, “Spectral properties of a semiconductor laser coupled to a single mode fiber cavity,” IEEE J. Quantum Electron. 21(12), 1937–1946 (1985).
10. L. Scalise, Y. Yu, and G. Giuliani, “Self-mixing laser diode velocimetry: application to vibration and velocity measurement,” IEEE Trans. Instrum. Meas. 53(1), 223–232 (2004).
11. D. A. Usanov, A. V. Skripal, and E. I. Astakhov, “Determination of nanovibration amplitudes using frequency-modulated semiconductor laser autodyne,” Quantum Electron. 44(2), 184–188 (2014) [Kvant. Elektron. 44(2), 184–188 (2014)].
12. A. V. Marugin, A. V. Kharchev, and V. B. Tsaregradskiı˘, “Low frequency fluctuations in the radiation power of an individual longitudinal mode of injection laser,” Zh. Tekh. Fiz. 64(5), 62–71 (1994).
13. D. Lenstra, B. H. Verbeek, and A. J. Den Boef, “Coherence collapse in single-mode semiconductor laser due to optical feedback,” IEEE J. Quantum Electron. 21, 674–679 (1985).