ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2018-85-04-53-59

High-sensitivity fiber temperature and refractive index sensing with nonadiabatic fiber taper

For Russian citation (Opticheskii Zhurnal):

Yihui Hu, Chao Jiang, Ming Zhou, Jibing Liu High-sensitivity fiber temperature and refractive index sensing with nonadiabatic fiber taper (Высокочувствительный датчик изменений температуры и показателя преломления на основе оптического волокна с неадиабатическим утоньшением) [на англ. яз.] // Оптический журнал. 2018. Т. 85. № 4. С. 53–59. http://doi.org/10.17586/1023-5086-2018-85-04-53-59

 

Yihui Hu, Chao Jiang, Ming Zhou, Jibing Liu High-sensitivity fiber temperature and refractive index sensing with nonadiabatic fiber taper (Высокочувствительный датчик изменений температуры и показателя преломления на основе оптического волокна с неадиабатическим утоньшением) [in English] // Opticheskii Zhurnal. 2018. V. 85. № 4. P. 53–59. http://doi.org/10.17586/1023-5086-2018-85-04-53-59

For citation (Journal of Optical Technology):

Yihui Hu, Chao Jiang, Ming Zhou, and Jibing Liu, "High-sensitivity fiber temperature and refractive index sensing with nonadiabatic fiber taper," Journal of Optical Technology. 85(4), 233-237 (2018). https://doi.org/10.1364/JOT.85.000233

Abstract:

In the paper, simultaneous measurement temperature and external refractive index is achieved in the present scheme, this scheme is based on Mach–Zehnder interferometer using a nonadiabatic single mode fiber taper without an air cavity. This scheme is quite simple and the smallest diameter of the tapered fiber is about 83.1 micrometers and the length of tapered fiber is about 1 centimeter. The transmission spectrum of the nonadiabatic tapered fiber exhibits a number of resonance wavelength dips which corresponds to different orders of cladding modes. The interferometer can be used for simultaneous refractive index (RI) and temperature sensing by monitoring the variation of selected two wavelength dips. The sensitivity achieved are –44.69 nm/RIU and 0.0386 nm/°C, and –72.21 nm/RIU and 0.0321 nm/°C for refractive index (RI) and temperature, respectively. The proposed tapered single mode optical fiber interferometer would find potential applications in multiple-parameter sensing owing to its high sensitivity, compactness, ease of fabrication, and low cost.

Keywords:

optical fiber, Mach–Zehnder interferometer, temperature, refractive index

Acknowledgements:

The research is supported in part by the Scientific and Technological Research Program of Education Department of Hubei Province (D20152501) and by the program of Outstanding Innovation Team of Hubei Normal University (No: T201502) and by Hubei Undergraduate Training Programs for Innovation and Entrepreneurship Training Programs (201610513029). J. Liu acknowledges Dr. Y. Wang, H. Gong, H. Liu, F. Yang, C. Wang and K. Ni for their enlightening suggestions and help.

OCIS codes: 060.2370, 060.2430, 060.4005

References:

1. Mizaikoff B. Peer reviewed: Mid-IR fiber-optic sensors // Anal. Chem. 2003. V. 75. № 11. P. 258–267.
2. Ikeda T., Popescu G., Dasari R.R., Feld M.S. Hilbert phase microscopy for investigating fast dynamics in transparent systems // Opt. Lett. 2005. V. 30. № 10. P. 1165–1167.
3. Udd E. An overview of fiber optic sensors // Rev. Sci. Instrum. 1995. V. 66. № 8. P. 4015–4030.
4. Sharma A.K., Jha R., Gupta B.D. Fiber-optic sensors based on surface plasmon resonance: a comprehensive review // Sensors Journal. IEEE. 2007. V. 7. № 8. P. 1118–1129.
5. Kanso M., Cuenot S., Louarn G. Sensitivity of optical fiber sensor based on surface plasmon resonance: modeling and experiments // Plasmonics. 2008. V. 3. № 2, 3. P. 49–57.
6. Mishra S.K., Kumari D., Gupta B.D. Surface plasmon resonance based fiber optic ammonia gas sensor using ITO and polyaniline // Sensor Actuat. B-chem. 2012. V. 171. P. 976–983.
7. Grattan K.T.V., Sun T. Fiber optic sensor technology: an overview // Sensor Actuat. A-phys. 2000. V. 82. № 1. P. 40–61.
8. Lu P., Men L., Sooley K. Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature // Appl. Phys. Lett. 2009. V. 94. № 13. P. 131110.
9. Li L., Xia L., Xie Z. All-fiber Mach–Zehnder interferometers for sensing applications // Opt. Express. 2012. V. 20. № 10. P. 11109–11120.
10. Jiang L., Yang J., Wang S. Fiber Mach–Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity // Opt. Lett. 2011. V. 36. № 19. P. 3753–3755.
11. Yang R., Yu Y.S., Xue Y. Single S-tapered fiber Mach–Zehnder interferometers // Opt. Lett. 2011. V. 36. № 23. P. 4482–4484.

12. Wang Y., Li Y., Liao C. High-temperature sensing using miniaturized fiber in-line Mach–Zehnder interferometer // Ieee. Photonic. Technol. L. 2010. V. 22. № 1. P. 39–41.
13. Hu D.J.J., Lim J.L., Jiang M. Long period grating cascaded to photonic crystal fiber modal interferometer for simultaneous measurement of temperature and refractive index // Opt. Lett. 2012. V. 37. № 12. P. 2283–2285.
14. Yang J., Jiang L., Wang S. High sensitivity of taper-based Mach–Zehnder interferometer embedded in a thinned optical fiber for refractive index sensing // Appl. Optics. 2011. V. 50. № 28. P. 5503–5507.
15. Li B., Jiang L., Wang S. Ultra-abrupt tapered fiber Mach–Zehnder interferometer sensors // Sensors. 2011. V. 11. № 6. P. 5729–5739.
16. Kersey A.D. Optical fiber sensors for permanent downwell monitoring applications in the oil and gas industry // Ieice. T. Electron. 2000. V. 83. № 3. P. 400–404.
17. Hu T.Y., Wang Y., Liao C.R., Wang D.N. Miniaturized fiber in-line Mach–Zehnder interferometer based on inner air cavity for high-temperature sensing // Opt. Lett. 2012. V. 37. № 24. P. 5082–5084.
18. Favero F.C., Araujo L., Bouwmans G., Finazzi V., Villatoro J., Pruneri V. Spheroidal Fabry–Perot microcavities in optical fibers for high-sensitivity sensing // Opt. Express. 2012. V. 20. № 7. P. 7112–7118.
19. Duan D.W., Rao Y., Hou Y.S., Zhu T. Microbubble based fiber-optic Fabry–Perot interferometer formed by fusion splicing single-mode fibers for strain measurement // Appl. Optics. 2012. V. 51. № 8. P. 1033–1036.
20. Zhang X.Y., Yu Y.S., Zhu C.C., Chen C., Wang Y.P., Li Z.Y., Wang Q., Wang D.N. Miniature end-capped fiber sensor for refractive index and temperature measurement// Ieee. Photonic. Technol. L. 2014. V. 26. № 1. P. 7–10.
21. Liao C., Liu S., Xu L., Wang C., Wang Y.P., Li Z.Y., Wang Q., Wang D.N. Sub-micron silica diaphragm-based fiber-tip Fabry–Perot interferometer for pressure measurement // Opt. Lett. 2014. V. 39. № 10. P. 2827–2830.
22. Kersey A.D., Davis M.A., Patrick H.J., LeBlanc M., Koo K.P., Askins C.G., Putram M.A., Friebele E.J. Fiber grating sensors // J. Lightwave. Technol. 1997. V. 15. № 8. P. 1442–1463.
23. Maaskant R., Alavie T., Measures R.M., Todros G., Rizkalla S.H. Thakurata A.G. Fiber-optic Bragg grating sensors for bridge monitoring // Cement Concrete. Comp. 1997. V. 19. № 1. P. 21–33.
24. Hill K.O., Meltz G. Fiber Bragg grating technology fundamentals and overview // J. Lightwave. Technol. 1997. V. 15. № 8. P. 1263–1276.
25. James S.W., Tatam R.P. Optical fibre long-period grating sensors: characteristics and application // Meas. Sci. Technol. 2003. V. 14. № 5. P. R49.
26. Gong H., Chan C.C., Zhang Y.F., Wong W.C., Dong X. Miniature refractometer based on modal interference in a hollowcore photonic crystal fiber with collapsed splicing // J. Biomed. Opt. 2011. V. 16. № 1. P. 017004.
27. Gong H., Yang X., Ni K., Zhao C.L., Dong X. An optical fiber curvature sensor based on two peanut-shape structures modal interferometer// Ieee. Photonic. Technol. L. 2014. V. 26. № 1. P. 22–24.
28. Gong H., Song H., Li X., Wang J., Dong X. An optical fiber curvature sensor based on photonic crystal fiber modal interferometer // Sensor Actuat. A-phys. 2013. V. 195. P. 139–141.
29. Zhang L., Wang D., Liu J., Chen H. Simultaneous refractive index and temperature sensing with precise sensing location // Ieee. Photonic. Technol. L. 2016. V. 28. № 8. P. 891–894.
30. Liu J., Wang D., Zhang L. Slightly tapered optical fiber with dual inner air-cavities for simultaneous refractive index and temperature measurement // J. Lightwave. Technol. 2016. V. 34. № 21. P. 4872–4876.
31. Chen H.F., Wang D.N., Hong W. Slightly tapered optical fiber with inner air-cavity as a miniature and versatile sensing device // J. Lightwave. Technol. 2015. V. 33. № 1. P. 62–68.
32. Chen J., Zhou J., Jia Z. High-sensitivity displacement sensor based on a bent fiber Mach–Zehnder interferometer // Ieee. Photonic. Technol. L. 2013. V. 25. № 23. P. 2354–2357.
33. Yin G., Lou S., Zou H. Refractive index sensor with asymmetrical fiber Mach–Zehnder interferometer based on concatenating single-mode abrupt taper and core-offset section // Opt. Laser Technol. 2013. V. 45. P. 294–300.
34. Xu L., Li Y., Li B. Nonadiabatic fiber taper-based Mach–Zehnder interferometer for refractive index sensing // Appl. Phys. Lett. 2012. V. 101. № 15. P. 153510.
35. Yu H., Xiong L., Chen Z. Ultracompact and high sensitive refractive index sensor based on Mach–Zehnder interferometer // Opt. Laser. Eng. 2014. V. 56. P. 50–53.
36. Lu P., Harris J., Xu Y. Simultaneous refractive index and temperature measurements using a tapered bend-resistant fiber interferometer // Opt. Lett. 2012. V. 37. № 22. P. 4567–4569.

37. Zhou J., Liao C., Wang Y. Simultaneous measurement of strain and temperature by employing fiber Mach–Zehnder interferometer // Opt. Express. 2014. V. 22. № 2. P. 1680–1686.
38. Yang R., Yu Y.S., Chen C. S-tapered fiber sensors for highly sensitive measurement of refractive index and axial strain // J. Lightwave. Technol. 2012. V. 30. № 19. P. 3126–3132.
39. Wang Y.P., Rao Y.J. A novel long period fiber grating sensor measuring curvature and determining bend-direction simultaneously // Sensors Journal, IEEE. 2005. V. 5. № 5. P. 839–843.
40. Yao Q., Meng H., Wang W. Simultaneous measurement of refractive index and temperature based on a core-offset Mach–Zehnder interferometer combined with a fiber Bragg grating // Sensor Actuat. A-phys. 2014. V. 209. P. 73–77.
41. Luo H., Sun Q., Xu Z. Simultaneous measurement of refractive index and temperature using multimode microfiberbased dual Mach–Zehnder interferometer // Opt. Lett. 2014. V. 39. № 13. P. 4049–4052.
42. Tian Z., Yam S.S.H., Barnes J., Bock W., Creig P., Fraser J.M., Loock H.P., Oleschuk R.D. Refractive index sensing with Mach–Zehnder interferometer based on concatenating two single-mode fiber tapers// Ieee. Photonic. Technol. L. 2008. V. 20. № 8. P. 626–628.
43. Monzón-Hernández D., Minkovich V.P., Villatoro J., Kreuzer M.P., Badenes G. Photonic crystal fiber microtaper supporting two selective higher-order modes with high sensitivity to gas molecules // Appl. Phys. Lett. 2008. V. 93. № 8. P. 081106.
44. Corres J.M., Arregui F.J., Matias I.R. Design of humidity sensors based on tapered optical fibers // J. Lightwave. Technol. 2006. V. 24. № 11. P. 4329–4336.
45. Li E. Sensitivity-enhanced fiber-optic strain sensor based on interference of higher order modes in circular fibers // Ieee. Photonic. Technol. L. 2007. V. 19. № 16. P. 1266–1268.