DOI: 10.17586/1023-5086-2018-85-05-53-59
УДК: 621.397.4, 004.932.2
Video inertial measurement system
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Малашин Д.О., Петерсон М.В., Малашин Р.О. Видеоинерциальная измерительная система // Оптический журнал. 2018. Т. 85. № 5. С. 53–59. http://doi.org/10.17586/1023-5086-2018-85-05-53-59
Malashin D.O., Peterson M.V., Malashin R.O. Video inertial measurement system [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 5. P. 53–59. http://doi.org/10.17586/1023-5086-2018-85-05-53-59
D. Malashin, M. Peterson, and R. Malashin, "Video inertial measurement system," Journal of Optical Technology. 85(5), 296-301 (2018). https://doi.org/10.1364/JOT.85.000301
A method for the fundamental improvement of inertial measurement systems by adding a solid-state photodetector and algorithms for processing video information is described. Improvement is achieved by zeroing accumulating errors via the image-based calibration of the device position. Experiments were performed at a sensor speed greater than 20 m/s. The calibration accuracy with respect to the reference point was 1 mm in terms of the position and less than a degree in terms of the sensor orientation. A prototype was developed with comparatively low power consumption (corresponding to a peak value not exceeding 1.5 W and average power consumption less than 0.2 W) and small size (with the total volume of the two boards equal to 7 cm3).
inertial measurement system, camera calibration
OCIS codes: 150.0150, 110.0110
References:1. F. Rehrmann, J. Schwendner, J. Cornforth, D. Durrant, R. Lindegren, P. Selin, J. H. Carrio, P. Poulakis, and J. Köhler, “A miniaturised space qualified MEMS IMU for rover navigation,” in Proceedings of the 11th Symposium on Advanced Space Technologies in Robotics and Automation (2011), paper 07B.
2. G. W. Vogl, M. A. Donmez, and A. Archenti, “Diagnostics for geometric performance of machine tool linear axes,” CIRP Ann. 65(1), 377–380 (2016).
3. N. C. Perkins, “Electronic measurement of the motion of a moving body of sports equipment,” U.S. Patent US7234351 B2 (June 26, 2007).
4. O. J. Woodman, “An introduction to inertial navigation,” Technical Report No. 696 (University of Cambridge, 2007).
5. S. O. H. Madgwick, “An efficient orientation filter for inertial and inertial/magnetic sensor arrays,” x-io and University of Bristol report (2010).
6. G. A. Avanesov, R. V. Bessonov, N. N. Brysin, A. N. Kurkina, A. S. Liskiv, M. B. Lyudomirskiı˘, I. S. Kayutin, N. E. Yamshchikov, A. L. Gavrilov, S. V. Gul’tsov, and Yu. V. Stepanov, “Inertial star navigation system,” Mekh. Upr. Inf. 7(2), 21–37 (2015).
7. G. A. Avanesov, R. V. Bessonov, A. N. Kurkina, E. A. Mysnik, A. S. Liskiv, M. B. Lyudomirskiı˘, I. S. Kayutin, and N. E. Yamshchikov, “Development of a platform-free inertial star navigation system,” in Collection of Scientific Works of the 3rd All-Russia Scientific-Technical Conference Modern Problems of Orientation and Navigation of Spacecraft (Tarusa, Russia, 10–13 September 2012), pp. 9–27.
8. M. Brown and D. Lowe, “Invariant features from interest point groups,” in Proceedings of the 13th British Machine Vision Conference (2002), pp. 656–665.
9. R. O. Malashin, “Correlating images of three-dimensional scenes by clusterizing the correlated local attributes, using the Hough transform,” J. Opt. Technol. 81(6), 327–333 (2014) [Opt. Zh. 81(6), 34–42 (2014)].
10. R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision (Cambridge University, Cambridge, 2003).
11. Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000).
12. D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963).
13. N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern. Syst. 9, 62–66 (1979).
14. A. Geiger, F. Moosmann, O. Car, and B. Schuster, “Automatic camera and range sensor calibration using a single shot,” in Proceedings of the International Conference on Robotics and Automation (ICRA) (2012), pp. 3936–3943.
15. Y. Ikei, K. Abe, K. Hirota, and T. Amemiya, “A multisensory VR system exploring the ultra-reality,” in Proceedings of the IEEE 18th International Conference on Virtual Systems and Multimedia (VSMM) (2012), pp. 71–78.