ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2018-85-08-39-45

УДК: 612.819.33

Spatial frequency text filtering for local and global analysis

For Russian citation (Opticheskii Zhurnal):

Ламминпия А.М., Пронин С.В., Шелепин Ю.Е. Пространственно-частотная фильтрация текста для локального и глобального анализа // Оптический журнал. 2018. Т. 85. № 8. С. 39–45. http://doi.org/10.17586/1023-5086-2018-85-08-39-45

 

Lamminpiya A.M., Pronin S.V., Shelepin Yu.E. Spatial frequency text filtering for local and global analysis [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 8. P. 39–45. http://doi.org/10.17586/1023-5086-2018-85-08-39-45

For citation (Journal of Optical Technology):

A. M. Lamminpiya, S. V. Pronin, and Yu. E. Shelepin, "Spatial frequency text filtering for local and global analysis," Journal of Optical Technology. 85(8), 476-481 (2018). https://doi.org/10.1364/JOT.85.000476

Abstract:

The interaction between the mechanisms of local and global image analysis at the level of the magnocellular and parvocellular channels of the human visual system was studied. Using wavelet filtering, the spatial frequency composition of texts presented to observers was varied. It was shown that gradual blurring of texts via wavelet filtering interferes with the work of the parvocellular system but simultaneously increases the contribution of the magnocellular system during reading. With an increase in the wavelet element scale, the parvocellular system receives insufficient information for effective work, and in this situation the magnocellular system determines the strategy of eye movements. In addition, the necessary frequency range that ensures the functioning of the reading process is provided.

Keywords:

magnocellular and parvocellular systems, saccades, reading, spatial frequency, mechanisms of local and global image analysis

Acknowledgements:

The research was supported by the Program of Fundamental Scientific Research of State Academies for 2013–2020 (GP-14, section 63).

OCIS codes: 330.4595, 330.6110, 330.5020, 330.5000, 330.2210

References:

1. S. P. Liversedge, D. Drieghe, X. Li, G. Yan, X. Bai, and J. Hyona, “Universality in eye movements and reading: a trilingual investigation,” Cognition 147(3), 1–20 (2016).
2. K. Rayner and S. A. Duffy, “Lexical complexity and fixation times in reading: effects of word frequency, verb complexity, and lexical ambiguity,” Mem. Cognit. 14(3), 191–201 (1986).
3. R. Engbert, A. Nuthmann, E. M. Richter, and R. Kliegl, “SWIFT: a dynamical model of saccade generation during reading,” Psychol. Rev. 112(4), 777–813 (2005).
4. E. D. Reichle, T. Warren, and K. McConnell, “Using E-Z Reader to model the effects of higher level language processing on eye movements during reading,” Psychon. Bull. Rev. 16(1), 1–21 (2009).
5. E. D. Reichle, K. Rayner, and A. Pollatsek, “The E-Z Reader model of eye-movement control in reading: comparisons to other models,” Behav. Brain Sci. 26(4), 445–476 (2003).
6. J. Pynte and A. Kennedy, “An influence over eye movements in reading exerted from beyond the level of the word: evidence from reading English and French,” Vis. Res. 46(22), 3786–3801 (2006).
7. V. Kuperman, M. Dambacher, A. Nuthmann, and R. Kliegl, “The effect of word position on eye-movements in sentence and paragraph reading,” Q. J. Exp. Psychol. 63(9), 1838–1857 (2010).
8. J. Balogh, A. Zurif, P. Prather, D. Swinney, and L. Finkel, “Gap-filling and end-of-sentence effects in real-time language processing: implications for modeling sentence comprehension in aphasia,” Brain Lang. 61(61), 169–182 (1998).
9. K. Rayner, G. Kambe, and S. A. Duffy, “The effect of clause wrap-up on eye movements during reading,” Q. J. Exp. Psychol. 53(4), 1061–1080 (2000).
10. K. Rayner, S. C. Sereno, R. K. Morris, A. R. Schmauder, and C. Clifton, “Eye movements and on-line language comprehension processes,” Lang. Cognit. Processes 4(3–4), 21–49 (1989).
11. R. L. Hill and W. S. Murray, “Commas and spaces: effects of punctuation on eye movements and sentence parsing,” in Reading as a Perceptual Process, A. Kennedy, R. Radach, D. Heller, and J. Pynte, eds. (Elsevier, Amsterdam, 2000), pp. 565–589.
12. M. Hirotani, L. Frazier, and K. Rayner, “Punctuation and intonation effects on clause and sentence wrap-up: evidence from eye movements,” J. Mem. Lang. 54, 425–443 (2006).
13. T. Warren, S. J. White, and E. D. Reichle, “Investigating the causes of wrap-up effects: evidence from eye movements and E-Z Reader,” Cognition 111(1), 132–137 (2009).
14. R. Radach, L. Huestegge, and R. Reilly, “The role of global top-down factors in local eye-movement control in reading,” Psychol. Res. 72(6), 675–688 (2008).
15. L. Huestegge and D. Bocianski, “Effects of syntactic context on eye movements during reading,” Adv. Cognit. Psychol. 6, 79–87 (2010).
16. N. Al-Zanoon, M. Dambacher, and V. Kuperman, “Evidence for a global oculomotor program in reading,” Psychol. Res. 81(4), 863–877 (2017).
17. R. A. Schmidt, “A schema theory of discrete motor skill learning,” Psychol. Rev. 82(4), 225–260 (1975).
18. D. E. Sherwood and T. D. Lee, “Schema theory: critical review and implications for the role of cognition in a new theory of motor learning,” Res. Q. Exercise Sport 74(4), 376–382 (2003).
19. R. A. Schmidt, “Motor schema theory after 27 years: reflections and implications for a new theory,” Res. Q. Exercise Sport 74(4), 366–375 (2003).
20. V. D. Glezer and I. I. Tsukkerman, Information and Vision (USSR Academy of Sciences Publishing, Moscow-Leningrad, 1961).
21. D. Marr, Vision: Information Approach to the Study of Representation and Processing of Visual Images (Radio i Sviaz’, Moscow, 1987).
22. S. W. Kuffler, “Discharge patterns and functional organization of mammalian retina,” Neurophysiology 16, 37–68 (1953).
23. P. Burt and E. Adelson, “The Laplacian pyramid as a compact image code,” IEEE Trans. Commun. 31(4), 532–540 (1983).
24. J. Otero-Millan, X. G. Troncoso, S. L. Macknik, I. Serrano-Pedraza, and S. Martinez-Conde, “Saccades and microsaccades during visual fixation, exploration, and search: foundations for a common saccadic generator,” J. Vis. 8(14):21, 1–18 (2008).
25. V. A. Filin, Automation of Saccades (MGU Publishing, Moscow, 2002).
26. B. G. Breitmeyer, “The roles of sustained (P) and transient (M) channels in reading and reading disability,” in Facets of Dyslexia and Its Remediation, S. F. Right and R. Groner, eds. (Elsevier Science Publishers, Amsterdam, 1993), pp. 13–31.
27. T. R. Vidyasagar, “A neuronal model of attentional spotlight: parietal guiding the temporal,” Brain Res. Rev. 30, 66–76 (1999).
28. D. C. Burr, M. C. Morrone, and J. Ross, “Selective suppression of the magnocellular visual pathway during saccadic eye movements,” Nature 371, 511–513 (1994).

29. D. Burr, M. C. Morrone, and J. Ross, “Separate visual representations for perception and action revealed by saccadic eye movements,” Current Biol. 11(10), 798–802 (2001).
30. D. Burr, J. Ross, P. Binda, and M. C. Morrone, “Saccades compress space, time and number,” Trends Cognit. Sci. 14(12), 528–533 (2010).
31. K. Uchikawa and M. Sato, “Saccadic suppression of achromatic and chromatic responses measured by increment-threshold spectral sensitivity,” J. Opt. Soc. Am. A 12, 661–666 (1995).
32. J. Ross, D. Burr, and C. Morrone, “Suppression of the magnocellular pathway during saccades,” Behav. Brain Res. 80(1–2), 1–8 (1996).
33. C. Blakemore and F. W. Campbell, “Adaptation to spatial stimuli,” J. Physiol. 200, 11–13 (1969).
34. A. M. Lamminpiya, G. A. Moiseenko, O. A. Vakhrameeva, M. V. Sukhinin, and Y. E. Shelepin, “Study of the connection between the characteristics of eye movements and the fovea geometry,” Fiziol. Chel. 42(4), 32–37 (2016).