ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2019-86-01-40-47

УДК: 535.3 681.7.062

Flexible bimorphic mirror with high density of control electrodes for correcting wavefront aberrations

For Russian citation (Opticheskii Zhurnal):

Топоровский В.В., Скворцов А.А., Кудряшов А.В., Самаркин В.В., Шелдакова Ю.В., Пшонкин Д.Е. Гибкое биморфное зеркало с высокой плотностью управляющих электродов для коррекции аберраций волнового фронта // Оптический журнал. 2019. Т. 86. № 1. С. 40–47. http://doi.org/10.17586/1023-5086-2019-86-01-40-47

 

Toporovskiy V.V., Skvortsov A.A., Kudryashov A.V., Samarkin V.V., Sheldakova Yu.V., Pshonkin D.E. Flexible bimorphic mirror with high density of control electrodes for correcting wavefront aberrations  [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 1. P. 40–47. http://doi.org/10.17586/1023-5086-2019-86-01-40-47

For citation (Journal of Optical Technology):

V. V. Toporovskiĭ, A. A. Skvortsov, A. V. Kudryashov, V. V. Samarkin, Yu. V. Sheldakova, and D. E. Pshonkin, "Flexible bimorphic mirror with high density of control electrodes for correcting wavefront aberrations," Journal of Optical Technology. 86(1), 32-38 (2019). https://doi.org/10.1364/JOT.86.000032

Abstract:

A deformable bimorphic mirror with a high density of 37 electrodes and a diameter of 15 mm was fabricated to allow correction of small-scale wavefront aberrations. Laser-engraving technology was used to form a grid for the control electrodes. Wires were attached to the surfaces of the electrodes via ultrasonic welding.

Keywords:

bimorphic deformable mirror, laser beam control, wavefront aberrations

OCIS codes: 220.1080, 220.4610

References:

1. A. Kudryashov, A. Alexandrov, A. Rukosuev, V. Samarkin, P. Galarneau, S. Turbide, and F. Chateauneuf, “Extremely high-power CO 2 laser beam correction,” Appl. Opt. 54(14), 4352–4358 (2015).
2. V. Samarkin and A. Kudryashov, “Deformable mirrors for laser beam shaping,” Proc. SPIE 7789, 77890B (2010).
3. V. Samarkin, A. Alexandrov, G. Borsoni, T. Jitsuno, P. Romanov, A. Rukosuev, and A. Kudryashov, “Wide aperture piezoceramic deformable mirrors for aberration correction in high-power lasers,” High Power Laser Sci. Eng. 4, e4 (2016).
4. A. Buffington, F. Crawford, R. Muller, A. Schwemin, and R. Smits, “Correction of atmospheric distortion with an image-sharpening telescope,” J. Opt. Soc. Am. 67(3), 298–303 (1977).
5. A. Dixit, V. Porwall, and S. K. Mishra, “Characterization of multichannel deformable mirror for adaptive optics applications,” Asian J. Phys. 23(4), 581–590 (2014).
6. A. Rukosuev, A. Kudryashov, A. Lylova, V. Samarkin, and Y. Sheldakova, “Adaptive optics system for real-time wavefront correction,” Atmos. Oceanic Opt. 28(2), 189–195 (2015).
7. V. Toporovskiy, A. Kudryashov, V. Samarkin, J. Sheldakova, and A. Rukosuev, “Water-cooled stacked-actuator deformable mirror for high CW power laser beam correction,” Proc. SPIE 10772, 107720U (2018).
8. T. Bifano, “Adaptive imaging: MEMS deformable mirrors,” Nat. Photonics 5, 21–23 (2011).
9. T. Bifano, J. Perreault, R. M. Krishnamoorthy, and M. N. Horenstein, “Microelectromechanical deformable mirrors,” IEEE J. Sel. Top. Quantum Electron. 5(1), 83–89 (1999).
10. E. J. Aguayo, R. Lyon, M. Helmbrecht, and S. Khomusi, “FEM correlation and shock analysis of a VNC MEMS mirror segment,” Proc. SPIE 9143, 91435C (2014).
11. V. Samarkin, A. Alexandrov, T. Jitsuno, P. Romanov, A. Rukosuev, and A. Kudryashov, “Study of a wide-aperture combined deformable mirror for high-power pulsed phosphate glass lasers,” Quantum Electron. 45(12), 1086–1087 (2015).
12. V. Samarkin, A. Aleksandrov, and A. Kudryashov, “Bimorph mirrors for powerful laser beam correction and formation,” Proc. SPIE 4493, 269–276 (2002).
13. R. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976).

14. J. Sheldakova, V. Samarkin, A. Kudryashov, and A. Rukosuev, “Laser beam formation by adaptive optics,” Proc. SPIE 7913, 79130I (2011).
15. I. A. Glozman, Piezoceramics (Energiya, Moscow, 1967).
16. A. Kudryashov, V. Kulakov, Y. Kotsuba, L. Novikova, V. Panchenko, and V. Samarkin, “Low-cost adaptive optical devices for multipurpose applications,” Proc. SPIE 3688, 469–475 (1999).
17. P. Rausch, S. Verpoort, and U. Wittrock, “Unimorph piezoelectric deformable mirrors for space telescopes,” Proc. SPIE 9904, 990468 (2016).
18. G. Chryssolouris, Laser Machining—Theory and Practice (Springer–Verlag, New York, 1991).
19. R. Patel, P. S. Chaudhary, and D. K. Soni, “A review on laser engraving process for different materials,” Int. J. Sci. Res. Dev. 2(11), 1–4 (2015).
20. E. A. Neppiras, “Ultrasonic welding of the metals,” Ultrasonics 3(3), 128–135 (1965).
21. A. Rukosuev, A. Alexandrov, V. Zavalova, V. Samarkin, and A. Kudryashov, “Adaptive optical system based on bimorph mirror and Shack-Hartmann wavefront sensor,” Proc. SPIE 4493, 261–268 (2002).