DOI: 10.17586/1023-5086-2019-86-10-03-07
УДК: 536.42, 538.958, 544.015.4
Raman spectra of crystalline lithium carbonate in the pretransition region near a structural phase transition
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Алиев А.Р., Ахмедов И.Р., Какагасанов М.Г., Алиев З.А. Спектры комбинационного рассеяния кристаллического карбоната лития в предпереходной области вблизи структурного фазового перехода // Оптический журнал. 2019. Т. 86. № 10. С. 3–7. http://doi.org/10.17586/1023-5086-2019-86-10-03-07
Aliev A.R., Akhmedov I.R., Kakagasanov M.G., Aliev Z.A. Raman spectra of crystalline lithium carbonate in the pretransition region near a structural phase transition [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 10. P. 3–7. http://doi.org/10.17586/1023-5086-2019-86-10-03-07
A. R. Aliev, I. R. Akhmedov, M. G. Kakagasanov, and Z. A. Aliev, "Raman spectra of crystalline lithium carbonate in the pretransition region near a structural phase transition," Journal of Optical Technology. 86(10), 604-607 (2019). https://doi.org/10.1364/JOT.86.000604
Raman spectroscopy was used to study the molecular relaxation processes in lithium carbonate (Li2CO3). It has been established that in crystalline carbonate Li2CO3, the first-order structural phase transition has an extended character. The existence of a pretransition region in the carbonate Li2CO3 studied here was found.
Raman spectroscopy, molecular spectroscopy, vibrational relaxation, ion crystals, pretransition, carbonates
OCIS codes: 300.6390, 300.6450
References:1. Yu. N. Zhuravlev and D. V. Korabel’nikov, “An ab initio study of the vibrational properties of alkaline-earth metal nitrates and their crystal-lohydrates,” Opt. Spectrosc. 122(6), 929–936 (2017) [Opt. Spektrosk. 122(6), 972–979 (2017)].
2. V. S. Gorelik, A. A. Anik’ev, V. M. Korshunov, and Yu. P. Voinov, “Probe Raman spectroscopy of sodium-uranyl acetate microcrystals,” Opt. Spectrosc. 123(2), 255–257 (2017) [Opt. Spektrosk. 123(2), 242–245 (2017)].
3. A. R. Aliev, I. R. Akhmedov, M. G. Kakagasanov, Z. A. Aliev, M. M. Gafurov, K. Sh. Rabadanov, and A. M. Amirov, “Inelastic intermolecular exchange of vibrational quanta and relaxation of vibrationally excited states in solid binary systems,” Fiz. Tverd. Tela 59(4), 736–740 (2017).
4. A. R. Aliev, I. R. Akhmedov, M. G. Kakagasanov, Z. A. Aliev, M. M. Gafurov, K. Sh. Rabadanov, and A. M. Amirov, “Relaxation of vibrationally excited states in solid ‘nitrate–nitrite’ binary systems,” Opt. Spectrosc. 123(4), 587–589 (2017) [Opt. Spektrosk. 123(4), 575–578 (2017)].
5. A. R. Aliev, I. R. Akhmedov, M. G. Kakagasanov, and Z. A. Aliev, “Thermal line broadening of totally symmetric vibrations in the Raman scattering spectra of LiNO 3 -LiClO 4 , Na2 CO 3 -Na 2 SO 4 , and KNO 3 -KNO 2 binary systems,” J. Opt. Technol. 85(1), 8–11 (2018) [Opt. Zh. 85(1), 8–16 (2018)].
6. A. R. Aliev, I. R. Akhmedov, M. G. Kakagasanov, Z. A. Aliev, M. M. Gafurov, K. Sh. Rabadanov, and A. M. Amirov, “Relaxation of vibrationally excited states in carbonate–sulfate systems,” Phys. Solid State 60(2), 347–351 (2018) [Fiz. Tverd. Tela 60(2), 341–345 (2018)].
7. M. B. Smirnov and J. Hinka, “Approximation of independent anharmonic oscillators in the theory of structural phase transitions in crystals,” Fiz. Tverd. Tela 42(12), 2219–2225 (2000).
8. V. I. Zinenko and N. G. Zamkova, “Lattice dynamics and statistical mechanics of the structural phase transition Fm3m → I4/m in a Rb 2 KInF 6 crystal,” Fiz. Tverd. Tela 43(12), 2193–2203 (2001).
9. Yu. N. Zhuravlev and D. V. Korabel’nikov, “The nature of electronic states and optical functions of sodium oxyanion compounds,” Fiz. Tverd. Tela 51(1), 65–72 (2009).
10. A. D. Muradov, K. M. Mukashev, and A. A. Kyrykbaeva, “The effect of γ irradiation on phase transitions in the polyimide–YBa 2 Cu3 O 6+x system,” Opt. Spectrosc. 124(6), 779–783 (2018) [Opt. Spektrosk. 124(6), 748–752 (2018)].
11. A. Ubbelode, Melting and Crystal Structure (Mir, Moscow, 1969).
12. G. D. Koposov and D. Yu. Bardyug, “Analysis of ice premelting in moisture-containing dispersed media,” Pis’ma Zh. Tekh. Fiz. 33(14), 80–86 (2007).
13. E. I. Demikhov, V. K. Dolganov, and V. M. Filev, “Pretransitional anomalies of rotation of the plane of polarization of light in ferroelectric liquid crystals,” Pis’ma Zh. Tekh. Fiz. 37(7), 305–308 (1983).
14. M. A. Anisimov, E. E. Gorodetskiı˘, and V. É. Podnek, “The influence of smectic fluctuations on pretransition phenomena in the isotropic phase of a nematic liquid crystal,” Pis’ma Zh. Tekh. Fiz. 37(8), 352–355 (1983).
15. E. I. Demikhov and V. K. Dolganov, “Pretransition effects near the blue phases of a cholesteric liquid crystal,” Pis’ma Zh. Tekh. Fiz. 38(8), 368–370 (1983).
16. V. A. Kizel’ and S. I. Panin, “Pretransitional phenomena in cholesterics with a small helix pitch,” Pis’ma Zh. Tekh. Fiz. 44(2), 74–77 (1986).
17. V. G. Pushin, V. V. Kondrat’ev, and V. N. Khachin, Pretransitional Phenomena and Martensitic Transformations (Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 1998).
18. A. A. Klopotov, T. L. Chekalkin, and V. É. Gyunter, “The effect of preliminary deformation on the behavior of a fine crystalline structure in the premartensitic region in an alloy based on titanium nickelide,” Zh. Tekh. Fiz. 71(6), 130–132 (2001).
19. E. I. Kuznetsova, “Modulated structures, pretransition phenomena and properties of metallic alloys (Ni-Al) and oxides Y(Eu)-Ba-Cu-O,” Dissertation (Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 2003).
20. V. N. Grishkov, A. I. Lotkov, S. F. Dubinin, S. G. Teploukhov, and V. D. Parkhomenko, “Modulation of short-wavelength atomic displacements in a TiNi-based alloy preceding the martensitic transformation B2 → B19′,” Fiz. Tverd. Tela 46(8), 1348–1355 (2004).
21. S. V. Mel’nikova, L. I. Isaenko, V. M. Pashkov, and I. V. Pevnev, “Phase transition in a KPb 2 Br 5 crystal,” Fiz. Tverd. Tela 47(2), 319–323 (2005).
22. S. V. Mel’nikova, V. D. Fokina, and N. M. Laptash, “Phase transitions in oxyfluoride (NH 4 ) 2 WO 2 F 4 ,” Fiz. Tverd. Tela 48(1), 110–113 (2006).
23. S. V. Mel’nikova, L. I. Isaenko, V. M. Pashkov, and I. V. Pevnev, “Search and study of phase transitions in some representatives of the APb2 X5 family,” Fiz. Tverd. Tela 48(11), 2032–2036 (2006).
24. S. V. Mel’nikova, N. M. Laptash, and K. Aleksandrov, “Optical studies of phase transitions in oxyfluoride (NH 4 ) 2 NbOF 5 ,” Fiz. Tverd. Tela 52(10), 2023–2027 (2010).
25. E. E. Slyadnikov, “Pretransition state and structural transition in a deformed crystal,” Fiz. Tverd. Tela 46(6), 1065–1070 (2004).
26. E. E. Slyadnikov, “Autosoliton in a structurally unstable crystal,” Pis’ma Zh. Tekh. Fiz. 31(5), 30–35 (2005).
27. E. E. Slyadnikov, “Soliton of elastic deformation field in a structurally unstable crystal,” Fiz. Tverd. Tela 47(3), 469–473 (2005).
28. E. E. Slyadnikov, “Pretransitional states and collective excitations in structurally unstable crystals,” Dissertation (Institute of Strength Physics and Materials Science SB RAS, Tomsk, 2005).
29. A. P. Belyaev, V. P. Rubets, V. V. Antipov, and N. S. Bordeau, “Phase transformations during the formation of crystals of paracetamol from the vapor phase,” Zh. Tekh. Fiz. 84(7), 156–158 (2014).
30. V. I. Maksimov, F. Dubinin, and T. P. Surkova, “Subtle features of the crystal structure of a cubic semiconductor Zn 0.9 V0.1 Se single crystal,” Fiz. Tverd. Tela 56(12), 2311–2318 (2014).
31. V. I. Maksimov, T. P. Surkova, V. D. Parkhomenko, and E. N. Yushkova, “Inhomogeneous distorted state of the crystal structure of a cubic Zn 0.95 Fe 0.05 Se crystal,” Fiz. Tverd. Tela 58(4), 633–641 (2016).
32. A. P. Belyaev, V. P. Rubets, and V. V. Antipov, “The effect of temperature on the rhombic form of molecular crystals of paracetamol,” Zh. Tekh. Fiz. 87(4), 624–626 (2017).
33. A. R. Aliev, M. M. Gafurov, I. R. Akhmedov, M. G. Kakagasanov, and Z. A. Aliev, “Structural phase transition peculiarities in ion-molecular perchlorate crystals,” Phys. Solid State 60(6), 1203–1213 (2018) [Fiz. Tverd. Tela 60(6), 1191–1201 (2018)].
34. V. I. Maksimov, E. N. Maksimova, T. P. Surkova, and V. P. Vokhmyanin, “On possible states of the crystal structure preceding to a phase transition in Zn 1-xVx Se (0.01 ≤ x ≤ 0.10) cyrstals,” Phys. Solid State 60(12), 2424–2435 (2018) [Fiz. Tverd. Tela 61(1), 42–52 (2019)].
35. A. N. Vtyurin, A. Belyu, A. S. Krylov, M. L. Afanas’yev, and A. P. Shebanin, “Phase transition from cubic to monoclinic phase in (NH 4 ) 3 ScF6 cryolite: Raman scattering study,” Fiz. Tverd. Tela 43(12), 2209–2212 (2001).
36. G. Z. Cummins and A. P. Levanyuk, eds., Light Scattering near Phase Transition Points (Nauka, Moscow, 1990).
37. V. Karpov and A. A. Shultin, “Orientational melting and pretransition in the ordered phases of rubidium and cesium nitrates,” Fiz. Tverd. Tela 17(10), 2868–2872 (1975).
38. Y. Ya. Abolin’sh, V. Karpov, and A. A. Shultin, “Raman scattering of ammonium nitrate in the region of the extended IV–V phase transition,” Fiz. Tverd. Tela 20(12), 3660–3663 (1978).
39. V. Karpov, T. Kraevskiı˘, and K. V. Timofeev, “Raman spectra and phase transition in a crystal of potassium lithium acid sulfate,” Fiz. Tverd. Tela 37(8), 2257–2261 (1995).
40. M. M. Gafurov, A. R. Aliev, and I. R. Akhmedov, “Raman and infrared study of the crystals with molecular anions in the region of the solid–liquid phase transition,” Spectrochim. Acta A 58(12), 2683–2692 (2002).
41. M. M. Gafurov and A. R. Aliev, “Molecular relaxation processes in the salt systems containing anions of various configurations,” Spectrochim. Acta A 60(7), 1549–1555 (2004).
42. Chemical Encyclopedia, Vol. 2 (Soviet Encyclopedia, Moscow, 1990).
43. C. W. Bale and A. D. Pelton, “Coupled phase diagram and thermodynamic analysis of the 18 binary systems formed among Li 2 CO 3 , K2 CO 3 , Na2 CO 3 , LiOH, KOH, NaOH, Li2SO 4 , K 2 SO 4 and Na2 SO 4 ,” CALPHAD 6(4), 255–278 (1982).
44. Y. Dessureault, J. Sangster, and A. D. Pelton, “Coupled phase diagram, thermodynamic analysis of the nine common-ion binary systems involving the carbonates and sulfates of lithium, sodium, and potassium,” J. Electrochem. Soc. 137(9), 2941–2950 (1990).
45. A. R. Aliev, M. M. Gafurov, and I. R. Akhmedov, “Molecular relaxation in molten nitrate/platinum electrode interfacial region,” Mol. Phys. 100(21), 3385–3388 (2002).
46. A. R. Aliev, M. M. Gafurov, and I. R. Akhmedov, “Intermolecular phonon decay mechanism of vibrational relaxation in binary salt systems,” Chem. Phys. Lett. 359(3–4), 262–266 (2002).
47. A. R. Aliev, M. M. Gafurov, and I. R. Akhmedov, “Raman spectra of lithium sulfate crystals in strong electric fields,” Chem. Phys. Lett. 353(3–4), 270–274 (2002).
48. A. R. Aliev and A. Z. Gadzhiev, “Raman spectra and vibrational relaxation in molten thiocyanates,” J. Mol. Liq. 107(1–3), 59–67 (2003).
49. A. R. Aliev, M. M. Gafurov, and I. R. Akhmedov, “Raman study of aqueous sodium nitrate, activated by the high-voltage pulsed electric discharge,” Chem. Phys. Lett. 378(1–2), 155–160 (2003).