DOI: 10.17586/1023-5086-2019-86-10-08-14
УДК: 538.958, 54-78, 535.372
Effect of gamma irradiation on photoluminescence of MEH-PPV/detonation nanodiamond polymer composite
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Романов Н.М., Шахов Ф.М., Осипов В.Ю., Мусихин С.Ф. Влияние гамма-облучения на фотолюминесценцию полимерного композита MEH-PPV/детонационный наноалмаз // Оптический журнал. 2019. Т. 86. № 10. С. 8–14. http://doi.org/10.17586/1023-5086-2019-86-10-08-14
Romanov N.M., Shakhov F.M., Osipov V.Yu., Musikhin S.F. Effect of gamma irradiation on photoluminescence of MEH-PPV/detonation nanodiamond polymer composite [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 10. P. 8–14. http://doi.org/10.17586/1023-5086-2019-86-10-08-14
N. M. Romanov, F. M. Shakhov, V. Yu. Osipov, and C. F. Musikhin, "Effect of gamma irradiation on photoluminescence of MEH-PPV/detonation nanodiamond polymer composite," Journal of Optical Technology. 86(10), 608-613 (2019). https://doi.org/10.1364/JOT.86.000608
We studied the photoluminescence of MEH-PPV polymer films and a MEH-PPV/DND nanocomposite after exposure to gamma irradiation from a radioisotope source of cesium-137 with doses of 0.5–12.2 kGy for H2O and their relaxation processes after exposure to the maximum dose. Exposure to gamma irradiation leads to the formation of new structural units in MEH-PPV/DND, which are similar in structure to the structural units of the conductive PPV polymer. A microscopic model is proposed that describes the evolution of MEH-PPV/DND photoluminescence in the context of the formation of bonds between aliphatic radicals of polymers and the surface of detonation diamond.
nanocomposites, conductive polymer, detonation nanodiamonds, gamma irradiation, photoluminescence, MEH-PPV
OCIS codes: 300.2530, 160.4236, 160.4890, 160.6000, 160.5470
References:1. K. M. Nimith, M. N. Satyanarayan, and G. Umesh, “Enhancement in fluorescence quantum yield of MEH-PPV:BT blends for polymer light emitting diode applications,” Opt. Mater. 80, 143–148 (2018).
2. S. Musikhin, L. Bakueva, E. H. Sargent, and A. Shik, “Luminescent properties and electronic structure of conjugated polymer-dielectric nanocrystal composites,” J. Appl. Phys. 91(10), 6679–6683 (2002).
3. M. T. Dang, L. Hirsch, and G. Wantz, “P3HT:PCBM, best seller in polymer photovoltaic research,” Adv. Mater. 23(31), 3597–3602 (2011).
4. Y. Lin and X. Zhan, “Non-fullerene acceptors for organic photovoltaics: an emerging horizon,” Mater. Horiz. 5(1), 463–470 (2014).
5. S. Ren, M. Bernardi, R. R. Lunt, V. Bulovic, J. C. Grossman, and S. Gradečak, “Toward efficient carbon nanotube/P3HT solar cells: active layer morphology, electrical, and optical properties,” Nano Lett. 11(12), 5316–5321 (2011).
6. M. M. Stylianakis, E. Stratakis, E. Koudoumas, E. Kymakis, and S. H. Anastasiadis, “Organic bulk heterojunction photovoltaic devices based on polythiophene-graphene composites,” ACS Appl. Mater. Interfaces 4(9), 4864–4870 (2012).
7. L. Feng, F. Wang, M. S. Niu, F. Zheng, Q. Bi, X. Y. Yang, W. L. Xu, and X. T. Hao, “Structural and optical properties of conjugated polymer and carbon-based non-fullerene material blend films for photovoltaic applications,” Opt. Mater. Express 7(3), 687–697 (2017).
8. W. L. Xu, F. Zheng, X. Y. Yang, H. D. Jin, L. Feng, and X.-T. Hao, “Charge transfer dynamics in poly(3-hexylthiophene): nanodiamond blend films,” Diamond Relat. Mater. 64, 8–12 (2016).
9. A. Kausar, R. Ashraf, and M. Siddiq, “Polymer/nanodiamond composites in Li-ion batteries: a review,” Polym.-Plast. Technol. Eng. 53, 550–563 (2014).
10. I. Kovalenko, D. G. Bucknall, and G. Yushin, “Detonation nanodiamond and onion-like-carbon-embedded polyaniline for supercapacitors,” Adv. Funct. Mater. 20, 3979–3986 (2010).
11. H. Gomez, M. K. Ram, F. Alvi, E. Stefanakos, and A. Kumar, “Novel synthesis, characterization, and corrosion inhibition properties of nanodiamond-polyaniline films,” J. Phys. Chem. C 114, 18797–18804 (2010).
12. E. Tamburri, S. Orlanducci, V. Guglielmotti, G. Reina, M. Rossi, and M. L. Terranova, “Engineering detonation nanodiamond—polyaniline composites by electrochemical routes: structural features and functional characterizations,” Polymer 52, 5001–5008 (2011).
13. M. Peters, S. Seneca, N. Hellings, T. Junkers, and A. Ethirajan, “Size-dependent properties of functional PPV-based conjugated polymer nanoparticles for bioimaging,” Colloids Surf. B 169, 494–501 (2018).
14. V. V. Danilenko, “On the history of the discovery of nanodiamond synthesis,” Phys. Solid State 46(4), 595–599 (2004).
15. N. M. Romanov, Y. Osipov, K. Takai, H. Touhara, and Y. Hattori, “Infrared spectroscopic study to determine thermal resistance of the functionalized surface of a detonation nanodiamond,” J. Opt. Technol. 84(10), 654–657 (2007).
16. X. C. Lau, C. Desai, and S. Mitra, “Functionalized nanodiamond as a charge transporter inorganic solar cells,” Sol. Energy 91, 204–211 (2013).
17. V. N. Mochalin and Y. Gogotsi, “Nanodiamond-polymer composites,” Diamond Relat. Mater. 58, 161–171 (2015).
18. N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, and F. Wudl, “Semiconducting polymer-buckminsterfullerene heterojunctions: diodes, photodiodes, and photovoltaic cells,” Appl. Phys. Lett. 62, 585–587 (1993).
19. N. M. Romanov and S. F. Musikhin, “Gamma-induced effect on the luminescence of nanocomposites of MEH-PPV conductive polymer with lead quantum dots,” St. Petersburg State Polytech. Univ. J. Phys. Math. 11(2), 41–48 (2018).
20. H. Jin, Y. Hou, X. Meng, Y. Li, Q. Shi, and F. Teng, “Enhanced photo-voltaic properties of polymer–fullerene bulk heterojunction solar cells by thermal annealing,” Solid State Commun. 142(3), 181–184 (2007).
21. M. S. AlSalhi, S. Prasad, D. Devaraj, and Z. S. A. Mustafa, “Gamma-irradiation effects on the spectral and amplified spontaneous emission (ASE) properties of conjugated polymers in solution,” Polymers 9(1), 1–14 (2017).
22. E. S. Bronze-Uhle, A. Batagin-Neto, F. C. Lavarda, and C. F. O. Graeff, “Ionizing radiation induced degradation of poly(2-methoxy-5-(2’-ethylhexyloxy)-1, 4-phenylene vinylene) in solution,” J. Appl. Phys. 110, 073510 (2011).
23. S. A. Nouh, A. A. Elfadl, and K. Benthami, “Gamma-induced changes in some of the structural and optical properties ofMakrofol polycarbonate/silver nanocomposites films,” Radiat. Eff. Defects Solids 172(1–2), 48–60 (2017).
24. J. Puišo, D. Adlienė, A. Guobiene, I. Prosycevas, and R. Plaipaite-Nalivaiko, “Modification of Ag-PVP nanocomposites by gamma irradiation,” Mater. Sci. Eng. B 176, 1562–1567 (2011).
25. S. C. Graham, R. H. Friend, S. Fung, and S. C. Moratti, “The effect of X-ray irradiation on poly(p-phenylene vinylene) and derivatives,” Synth. Met. 84(1–3), 903–904 (1997).
26. K. W. Lee, K. H. Mo, J. W. Jang, and C. E. Lee, “Proton-irradiation effect on the luminescence of the MEH-PPV conjugated polymer,” Solid State Commun. 141, 57–60 (2007).
27. H. Lee, D. Vak, K. J. Baeg, Y. C. Nah, D. Y. Kim, and Y. Y. Noh, “Synthesis of poly(p-phenylene-vinylene) derivatives containing an oxadiazole pendant group and their applications to organic electronic devices,” J. Nanosci. Nanotechnol. 13(5), 3321–3330 (2013).
28. Y. Osipov and N. M. Romanov, “Infrared absorption of diamond nanoparticles with a surface modified by complexes of nitrate ions,” J. Opt. Technol. 84(5), 285–288 (2017).
29. F. M. Shakhov, A. M. Abyzov, and K. Takai, “Boron doped diamond synthesized from detonation nanodiamond in a C-O-H fluid at high pressure and high temperature,” J. Solid State Chem. 256, 72–92 (2017).
30. N. M. Romanov, I. B. Zakharova, M. M. Malova, M. A. Elistratova, and S. F. Musikhin, “Effect of gamma radiation on the thin nanocomposite MEH-PPV/C60 films,” St. Petersburg State Polytech. Univ. J. Phys. Math. 11(4), 22–32 (2018).
31. K. H. Ibnaouf, “Excimer state of a conjugated polymer (MEH-PPV) in thin films,” Opt. Laser Technol. 48, 401–404 (2013).
32. E. S. Bronze-Uhle, J. F. Borin, A. Batagin-Neto, M. C. O. Alves, and C. F. O. Graeff, “MEH-PPV hypsochromic shifts in halogenated solvents induced by γ-rays,” Mater. Chem. Phys. 132, 846–851 (2012).
33. D. L. M. Bazani, J. P. H. Lima, and A. M. Andrade, “MEH-PPV thin films for radiation sensor applications,” IEEE Sens. J. 9(7), 748–751 (2009).
34. A. Tidjani and Y. Watanabe, “Gamma-oxidation of linear low-density polyethylene: the dose-rate effect of irradiation on chemical and physical modifications,” J. Polym. Sci. Part A-1: Polym. Chem. 33, 1455–1460 (1995).
35. S. S. Aarya, K. Dev, S. K. Raghuvanshi, J. B. M. Krishna, and M. A. Wahab, “Effect of gamma radiation on the structural and optical properties of polyethyleneterephthalate (PET) polymer,” Radiat. Phys. Chem. 81, 458–462 (2012).
36. S. D. Baranovskii, O. Rubel, F. Jansson, and R. Österbacka, “Description of charge transport in disordered organic materials,” in Organic Electronics, vol. 223 of Advances in Polymer Science (Springer, 2009), pp. 1–28.
37. S. J. Blanksby and G. B. Ellison, “Bond dissociation energies of organic molecules,” Acc. Chem. Res. 36(4), 255–263 (2003).