DOI: 10.17586/1023-5086-2019-86-12-59-64
УДК: 535.8 621.389
Minimizing aberrations of a near-infrared acousto-optic video spectrometer by optimizing the tunable filter parameters
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Мачихин А.С., Батшев В.И., Пожар В.Э., Боритко С.В. Минимизация аберраций акустооптического видеоспектрометра ближнего инфракрасного диапазона путём оптимизации параметров перестраиваемого фильтра // Оптический журнал. 2019. Т. 86. № 12. С. 59–64. http://doi.org/10.17586/1023-5086-2019-86-12-59-64
Machikhin A.S., Batshev V.I., Pozhar V.E., Boritko S.V. Minimizing aberrations of a near-infrared acousto-optic video spectrometer by optimizing the tunable filter parameters [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 12. P. 59–64. http://doi.org/10.17586/1023-5086-2019-86-12-59-64
A. S. Machikhin, V. I. Batshev, V. É. Pozhar, and S. V. Boritko, "Minimizing aberrations of a near-infrared acousto-optic video spectrometer by optimizing the tunable filter parameters," Journal of Optical Technology. 86(12), 794-798 (2019). https://doi.org/10.1364/JOT.86.000794
Minimization of the aberration distortions of a near-infrared image spectrometer is addressed in this study. A model of an acousto-optical video spectrometer has been developed that provides a fairly high quality of spectral images over the 0.9–1.7 µm range. Aberration distortions are minimized through ZEMAX software, using a semi-automated (interactive) procedure to optimize the geometric parameters of an acousto-optic paratellurite cell with the selected parameters of other optical elements of the system. The prototype developed here is characterized by the absence of distortion and lateral chromatic aberration, with diffraction-limited spatial resolution of 30 µm in the image plane within the entire field of view. The resulting spectral images confirm the calculation and simulation results.
spectral imaging, acousto-optical filtering, aberration calculation
Acknowledgements:The research was supported by the Russian Foundation for Basic Research (project No. 18-29-20095).
OCIS codes: 080.3620, 220.1000, 230.1040, 300.6340
References:1. G. A. Shaw and H. K. Burke, “Spectral imaging for remote sensing,” Lincoln Lab. J. 14(1), 3–26 (2003).
2. C. Chang, Hyperspectral Imaging: Techniques for Spectral Detection and Classification (Springer, New York, 2003).
3. D.-W. Sun, Hyperspectral Imaging for Food Quality Analysis and Control (Academic Press/Elsevier, California, 2009).
4. V. É. Pozhar and V. I. Pustovo˘ıt, “Acousto-optical spectral technologies,” Izv. Ross. Akad. Nauk, Ser. Fiz. 79(10), 1375–1380 (2015).
5. N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
6. Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, “Review of spectral imaging technology in biomedical engineering,” J. Biomed. Opt. 18(10), 5294–5307 (2013).
7. Z. Gao, L. Zeng, and G. Wu, “AOTF-based near-infrared imaging spectrometer for rapid identification of camouflaged target,” Proc. SPIE 9298, 92980R (2014).
8. N. Gupta, “Development of spectropolarimetric imagers from 400 to 1700 nm,” Proc. SPIE 9099, 90990N (2014).
9. O. I. Korablev, D. A. Belyaev, Y. S. Dobrolenskiy, A. Y. Trokhimovskiy, and Y. K. Kalinnikov, “Acousto-optic tunable filter spectrometers in space missions,” Appl. Opt. 57(10), C103–C119 (2018).
10. V. Pozhar and A. Machihin, “Image aberrations caused by light diffraction via ultrasonic waves in uniaxial crystals,” Appl. Opt. 51(19), 4513–4519 (2012).
11. A. Machikhin, V. Batshev, and V. Pozhar, “Aberration analysis of AOTF-based spectral imaging systems,” J. Opt. Soc. Am. A 34(7), 1109–1113 (2017).
12. V. M. Epikhin, F. L. Vizen, N. V. Nikitin, and Y. K. Kalinnikov, “Noncollinear acousto-optic filter with optimal angular characteristics,” Zh. Tekh. Fiz. 52(12), 2405–2410 (1982).