DOI: 10.17586/1023-5086-2019-86-12-76-82
УДК: 535.3
Use of a high-power semiconductor laser with fiber-optic output in a control system for a space-based antenna
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Кочин Л.Б., Страхов С.Ю., Матвеев С.А., Яковенко Н.Г., Ширшов А.Д. О возможности использования мощного полупроводникового лазера с волоконно-оптическим выводом излучения в системе управления космической антенны // Оптический журнал. 2019. Т. 86. № 12. С. 76–82. http://doi.org/10.17586/1023-5086-2019-86-12-76-82
Kochin L.B., Strakhov S.Yu., Matveev S.A., Yakovenko N.G., Shirshov A.D. Use of a high-power semiconductor laser with fiber-optic output in a control system for a space-based antenna [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 12. P. 76–82. http://doi.org/10.17586/1023-5086-2019-86-12-76-82
L. B. Kochin, S. Yu. Strakhov, S. A. Matveev, N. G. Yakovenko, and A. D. Shirshov, "Use of a high-power semiconductor laser with fiber-optic output in a control system for a space-based antenna," Journal of Optical Technology. 86(12), 808-813 (2019). https://doi.org/10.1364/JOT.86.000808
In this paper, we discuss the use of a high-power infrared semiconductor laser for power and data transfer via a wireless system for controlling a space-based reconfigurable reflector antenna. We present a theoretical description of the processes that occur during power transfer via an optical fiber. We provide a block diagram and component specification list for the experimental setup. We analyze the experimental results and reach a variety of conclusions. We examine restrictions on the use of fiber-optic circuits for power transfer.
reconfigurable reflector antenna, wireless power and data transfer, fiber-optic channel, semiconductor laser, control system, photo converter
Acknowledgements:This work was performed within the framework of the Federal Special-Purpose Research and Development Program for Advancement of the Russian Science and Technology Sector for 2014–2020, Subsidy Agreement No. 14.574.21.0165 of 26 September 2017, Electronic Library Agreement No. 075-02-2018-1074 of 15 November 2018. Unique Identifier RFMEFI57417X0165: “Development of a wireless control system for controlling the shape of configurable ground- and space-based structures using precision actuators.”
OCIS codes: 140.3070, 040.5350
References:1. L. B. Kochin, S. Yu. Strakhov, and S. A. Matveev, “Specific features of structural-and-parametric synthesis of a space-based transformed antenna control system using optical channels for energy and information exchange,” Vopr. Radioelektron. (8), 48–53 (2016).
2. S. A. Matveev, I. V. Shevtsov, A. D. Shirshov, and N. G. Yakovenko, “Wireless power supply system for flexible space antenna actuators,” Russ. Aeronaut. 61, 636—641 (2018).
3. L. B. Kochin and S. Yu. Strakhov, “Effect of external conditions on reliability of wireless control systems for space-based antennas,” Vopr. Radioelektron. (7), 97–103 (2017).
4. S. Y. Strakhov, L. B. Kochin, T. M. Sukhov, S. A. Matveev, and K. V. Dukel’ski˘ı, “Digital machine vision system for controlling the shape of large antennas,” J. Opt. Technol. 85(4), 244–249 (2018) [Opt. Zh. 85(4), 67–74 (2018)].
5. L. B. Kochin, S. Yu. Strakhov, and S. A. Matveev, “Operational characteristics of wireless energy transfer channels in dynamic mode,” Vopr. Radioelektron. (7), 79–88 (2018).
6. D. M. Demidov, A. L. Ter-Martirosyan, K. A. Bulashevich, O. V. Khokhlev, and S. Yu. Karpov, “High-power laser diodes with radiation wavelength 808 nm: I. Thermal mechanisms limiting output power,” Nauchn. Priborostr. 22(3), 78–86 (2012).
7. V. M. Andreev, “High-power photoelectric transducers for monochromatic and concentrated solar radiation,” Sovrem. Elektron. (6), 20–25 (2014).
8. V. P. Efimov, “New-generation phototransducers for solar energy,” Fiz. Inzh. Poverkhn. 8(2), 100–115 (2010).
9. D. A. Vinokurov, V. A. Kapitonov, A. V. Lyutetski˘ı, D. N. Nikolaev, N. A. Pikhtin, A. V. Rozhkov, N. A. Rudova, S. O. Slipchenko, A. L. Stankevich, N. V. Fetisova, M. A. Khomylev, V. V. Shamakhov, K. S. Borshchev, and I. S. Tarasov, “Studying the characteristics of pulse-pumped semiconductor 1060-nm lasers based on asymmetric heterostructures with ultrathick waveguides,” Tech. Phys. Lett. 32, 712–715 (2006) [Pis’ma Zh. Tekh. Fiz. 32(16), 47–55 (2006)].
10. A. N. Petrunov, A. A. Podoskin, I. S. Shashkin, S. O. Slipchenko, N. A. Pikhtin, T. A. Nalet, N. V. Fetisova, L. S. Vavilova, A. V. Lyutetskiy, P. A. Alekseev, A. N. Titkov, and I. S. Tarasov, “Pulsed semiconductor lasers with higher optical strength of cavity output mirrors,” Semiconductors 44, 789–793 (2010) [Fiz. Tekh. Poluprovodn. 44(6), 817–821 (2010)].
11. V. E. Zuev, “Atmospheric optics: summary and outlook,” Opt. Atmos. Okeana 1(01), 5–10 (1988).
12. V. V. Bruevich, V. M. Melnikov, D. Yu. Parashchuk, and B. N. Kharlov, “Centrifugally formed solar-pumped fiber-optics lasers as a new area in the development of space-based data and energy systems,” Kosmonavtika Raketostr. (6), 104–111 (2014).
13. A. S. Boreysho, A. A. Kim, and S. Yu. Strakhov, “Limitations in the application of fiber-optic technologies for remote transmission of energy,” Radioprom-st. (4), 34–41 (2017).