ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2019-86-02-46-51

High resolution integral imaging display by using microstructure array

For Russian citation (Opticheskii Zhurnal):

Yukun Zhang, Yuqing Fu, Huaiqian Wang, Huifang Li, Shuwan Pan, and Yongzhao Du High resolution integral imaging display by using microstructure array (Интегральный дисплей с высоким разрешением, использующий матрицу микроструктур) [на англ. яз.] // Оптический журнал. 2019. Т. 86. № 2. С. 46–51. http://doi.org/10.17586/1023-5086-2019-86-02-46-51

 

Yukun Zhang, Yuqing Fu, Huaiqian Wang, Huifang Li, Shuwan Pan, and Yongzhao Du High resolution integral imaging display by using microstructure array (Интегральный дисплей с высоким разрешением, использующий матрицу микроструктур) [in English] // Opticheskii Zhurnal. 2019. V. 86. № 2. P. 46–51. http://doi.org/10.17586/1023-5086-2019-86-02-46-51

For citation (Journal of Optical Technology):

Yukun Zhang, Yuqing Fu, Huaiqian Wang, Huifang Li, Shuwan Pan, and Yongzhao Du, "High resolution integral imaging display by using a microstructure array," Journal of Optical Technology. 86(2), 100-104 (2019). https://doi.org/10.1364/JOT.86.000100

Abstract:

A novel integral imaging method which can be used to display three dimensional (3D) images with high resolution is proposed. The integral imaging system consists of a delicate microstructure array and microlens array. The microstructure array displays the information of the microimage array. Due to the application of the delicate microstructure array, a large number of efficiency pixels in the microimage array are regularly imaged through the microlens array, which will result in the 3D images with high resolution. In this paper, the relationships among the resolution of the 3D images, the focal length of the microlens, microstructure array/microlens array distance, and the feature size of the microstructure array are analyzed theoretically based on optical design theories. The related experiments are performed. The microstructure array with 1 μm feature size is fabricated by lithographic method and applied on the integral imaging system, which forms the 3D images with the resolution 10 lines/mm. Compared with traditional integral imaging system, the resolution of the 3D images generated by the method is effectively enhanced. It is inferred that the method has great potential on static 3D display such as 3D photograph, 3D advertisement, and so on.

Keywords:

three-dimensional image processing, high resolution

Acknowledgements:

This research was supported by the grants from Education and Research Foundation for Young and Middle-aged Teachers in Fujian Province (No. JAT170052), National Natural Science Foundation of China (No.61605048), Natural Science Foundation of Fujian Province, China (No. 2016J01300), Natural Science Foundation of Fujian Province of China (No. 2015J01655), Foundation of Fujian Provincial Education Department of China (No. JA14025), and Scientific Research Foundation of Huaqiao University (No. 60005-Z15Y0013).

OCIS codes: 100.6890, 350.5730

References:

1. Lippmann G. La photographic integrale // C.R. Acad. Sci. 1908. V. 146 P. 446–451.
2. Deng H., Wang Q.H., Li D.H. The realization of computer generated integral imaging based on two step pickup method // IEEE: Symposium on Photonics and Optoelectronics, Chengdu, China, 08 July 2010. DOI: 10.1109/SOPO.2010.5504393.
3. Deng H., Wang Q.H., Li D.H., Wang F.N. Realization of undistorted and orthoscopic integral imaging without black zone in real and virtual fields // IEEE. 2011. № 7. P. 255–258.
4. Shin D., Javidi B. Three-dimensional integral imaging with improved visualization using subpixel optical ray sensing // Opt. Lett. 2012. V. 37. P. 2130–2132.
5. Jung S., Park J.H., Choi H., Lee B. Viewing-angle-enhanced integral three-dimensional imaging along all directions without mechanical movement // Optics Express. 2003. № 11. P. 1346–1356.
6. Okui M., Arai J., Nojiri Y., Okano F. Optical screen for direct projection of integral imaging // App. Opt. 2006. V. 45. P. 9132–9139.

7. Kawakita M., Sasaki H., Arai J., Okano F., Suehiro K., Haino Y., Yoshimura M., Sato M. Geometric analysis of spatial distortion in projection-type integral imaging // Opt. Lett. 2008. V. 33. P. 684–686.
8. Okano F., Arai J., Kawakita M. Wave optical analysis of integral method for three-dimensional images // Opt. Lett. 2007. V. 32. P. 364–366.
9. Park J.H., Hong K., Lee B. Recent progress in three-dimensional information processing based on integral imaging // App. Opt. 2009. V. 48. P. 77–94.
10. Kakeya H. Realization of undistorted volumetric multiview image with multilayered integral imaging // Optics Express. 2011. V. 19. P. 20395–20404.
11. Piao Y., Kim E.S. Resolution-enhanced reconstruction of far 3D objects by using a direct pixel mapping method in computational curving-effective integral imaging // App. Opt. 2009. V. 48. P. 222–230.
12. Jang J.S., Javidi B. Improved viewing resolution of three-dimensional integral imaging by use of nonstationary microoptics // Opt. Lett. 2002. V. 27. P. 324–326.
13. Liao H., Iwahara M., Koike T., Hata N., Sakuma I., Dohi T. Scalable high-resolution integral videography autostereoscopic display with a seamless multiprojection system // App. Opt. 2005. V. 44. P. 305–315.
14. Arai J., Okui M., Yamashita T., Okano F. Integral three-dimensional television using a 2000-scanning-line video system // App. Opt. 2006. V. 45. P. 1704–1714.
15. Park J.H., Min S.W., Jung S., Lee B. Analysis of viewing parameters for two display methods based on integral photography // App. Opt. 2001. V. 40. P. 5217–5232.
16. Du C.L., Du X.C., Qiu C.K., Deng Q.L., Zhou C.X. Profile control technology for high-performance microlens array // Opt. Eng. 2004. V. 43. P. 2592–2602.
17. Du X.C., Du C.L., Li S.H., Wang C.T., Fu Y.Q. Control approach for form accuracy of microlenses with continuous relief // Optics Express. 2005. V. 13. P. 1353–1360.
18. Zang Y.K., Dong X.C., Du J.L., Wei X.Z., Shi L.F., Deng Q.L., Du C.L. Nanolithography method by using localized surface plasmon mask generated with polydimethylsiloxane soft mold on thin metal film // Opt. Lett. 2010. V. 35. P. 2143–2145.