DOI: 10.17586/1023-5086-2019-86-02-55-61
УДК: 621.383.45, 621.793.09
Radially biased photoresistors with heteroepitaxial CdxHg1−xTe structure
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Гусаров А.В., Филатов А.В., Сусов Е.В., Карпов В.В., Гиндин П.Д. Фоторезисторы с радиальным смещением из гетероэпитаксиальных структур CdxHg1–xTe // Оптический журнал. 2019. Т. 86. № 2. С. 55–61. http://doi.org/10.17586/1023-5086-2019-86-02-55-61
Gusarov A.V., Filatov A.V., Susov E.V., Karpov V.V., Gindin P.D. Radially biased photoresistors with heteroepitaxial CdxHg1−xTe structure [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 2. P. 55–61. http://doi.org/10.17586/1023-5086-2019-86-02-55-61
A. V. Gusarov, A. V. Filatov, E. V. Susov, V. V. Karpov, and P. D. Gindin, "Radially biased photoresistors with heteroepitaxial CdxHg1−xTe structure," Journal of Optical Technology. 86(2), 108-113 (2019). https://doi.org/10.1364/JOT.86.000108
We study the properties and parameters of compact photoresistor sensors with radial contacts made from CdxHg1−xTe (x≈0.212) heteroepitaxial structures with graded-base contacts. For a bias voltage corresponding to a voltage sensitivity of 1.5×105 V/W and a planar field of view of 14°, the maximum power output was 0.5 μW per element, while the minimum specific detection capability is 1.2×1011 cm⋅Hz1/2/W. The photoresistor design and resulting photoelectric parameters of the photoresistors enable us to produce focal-plane photoresistor arrays with pixel counts of the order of 106 and use multiplexers for image signal processing.
heteroepitaxial CdxHg1−xTe structures, photoresistor, charge-carrier exclusion
OCIS codes: 230.5160, 040.3060, 160.6840
References:1. A. Rogalski, “HgCdTe infrared detector material: history, status and outlook,” Rep. Prog. Phys. 68, 2267–2336 (2005).
2. https://www.cobham.com/media/934628/ADV10553.pdf.
3. A. V. Filatov, E. V. Susov, N. S. Kuznetsov, and V. V. Karpov, “Photoresistors of the 2–15 μm spectral range based on CdxHg1−xTe heteroepitaxial structures obtained by molecular-beam epitaxy,” J. Opt. Technol. 83(9), 543–548 (2016) [Opt. Zh. 83(9), 43–50 (2016)].
4. J. Siliquini and L. Faraone, “The vertical photoconductor: a novel device structure suitable for HgCdTe two-dimensional infrared focal plane arrays,” Infrared Phys. Technol. 38, 205–221 (1997).
5. A. V. Filatov, E. V. Susov, and V. V. Karpov, “Photoresistors with charge-carrier exclusion for the 8–16-μm spectral range, made from n-Cd xHg1-x Te heteroepitaxial structures,” J. Opt. Technol. 85(6), 359–366 (2018) [Opt. Zh. 85, 58–66 (2018)].
6. A. V. Filatov, E. V. Susov, A. V. Gusarov, N. M. Akimova, V. V. Krapukhin, V. V. Karpov, and V. I. Shaevich, “Long-term stability of photoresistors for the spectral range 8–12 μm, fabricated from heteroepitaxial CdHgTe structures obtained by molecular-beam epitaxy,” J. Opt. Technol. 76(12), 773–776 (2009) [Opt. Zh. 76(12), 49–54 (2009)].
7. A. V. Filatov, E. V. Susov, and V. V. Karpov, “Formation, nature, and annealing of defects in Cd 0.2 Hg0.8 Te heteroepitaxial structures andphotoresistors subjected to ion etching,” J. Opt. Technol. 84(4), 275–280 (2017) [Opt. Zh. 84, 67–72 (2017)].
8. V. Varavin, S. Dvoretsky, V. Liberman, N. Mikhailov, and Y. G. Sidorov, “Molecular beam epitaxy of high quality Hg 1- xCdxTe films with control of the composition distribution,” J. Cryst. Growth 159, 1161–1166 (1996).
9. C. Elliott, “Non-equilibrium modes of operation of narrow-gap semiconductor devices,” Semicond. Sci. Technol. 5, S30 (1990).
10. J. Siliquini, K. Fynn, B. Nener, L. Faraone, and R. Hartley, “Improved device technology for epitaxial Hg1-xCdxTe infrared photoconductor arrays,” Semicond. Sci. Technol. 9, 1515–1522 (1994).
11. V. L. Bonch-Bruevich and S. G. Kalashnikov, Semiconductor Physics (Nauka, Moscow, 1977).
12. M. Kinch, S. Borrello, and A. Simmons, “0.1 eV HgCdTe photoconductive detector performance,” Infrared Phys. 17, 127–135 (1977).