DOI: 10.17586/1023-5086-2019-86-03-68-71
УДК: 535.016, 535.15, 535.041.08
Ultraviolet photodetector based on a ZnS–ZnO structure with a surface acoustic wave
Full text on elibrary.ru
Publication in Journal of Optical Technology
Григорьев А.В., Шакин О.В., Нефёдов В.Г., Михайлов А.В. Фотоприемник ультрафиолетового диапазона на структуре ZnS-ZnO с поверхностной акустической волной // Оптический журнал. 2019. Т. 86. № 3. С. 68–71. http://doi.org/10.17586/1023-5086-2019-86-03-68-71
Grigoriev A.V., Shakin O.V., Nefedov V.G., Mikhailov A.V. Ultraviolet photodetector based on a ZnS–ZnO structure with a surface acoustic wave [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 3. P. 68–71. http://doi.org/10.17586/1023-5086-2019-86-03-68-71
A. V. Grigoryev, O. V. Shakin, V. G. Nefedov, and A. V. Mikhaĭlov, "Ultraviolet photodetector based on a ZnS–ZnO structure with a surface acoustic wave," Journal of Optical Technology. 86(3), 183-186 (2019). https://doi.org/10.1364/JOT.86.000183
The structural properties of a thin ZnO film synthesized by a reactive ion-plasma method have been studied. It is shown that a combination of reactive ion-plasma sputtering and pulsed electron beam deposition methods allows the formation of a thin-film ZnS–ZnO heterostructure with few structural defects. The results of a study of the optical and photoelectric properties of ZnS–ZnO in the wavelength range from 0.26 to 0.45 μm are presented. The spectral dependence of the frequency shift of surface acoustic waves under the influence of ultraviolet radiation on the surface of the ZnS–ZnO heterostructure of a photodetector, based on an acoustoelectronic amplifier, has been studied.
zinc oxide, ZnS–ZnO heterostructure, photocurrent, ion-plasma sputtering, pulsed electron beam deposition, acoustoelectronic amplifier
Acknowledgements:The research was supported by the Russian Foundation for Basic Research (RFBR) (16-07-00237).
OCIS codes: 250.0250, 300.0300, 310.0310, 160.0160
References:1. T. Blank and U. A. Goldenberg, “Semiconductor photoelectric converters for the ultraviolet region of the spectrum,” Semiconductors 37(9), 999–1030 (2003) [Fiz. Tekh. Poluprovodn. 37(9), 1025–1055 (2003)].
2. C.-L. Wei, Y.-C. Chen, C.-C. Cheng, K.-S. Kao, D.-L. Cheng, and P.-S. Cheng, “Highly sensitive ultraviolet detector using a ZnO/Si layered SAW oscillator,” Thin Solid Films 518(11), 3059–3062 (2010).
3. L. V. Grigoryev, V. G. Nefedov, O. V. Shakin, A. V. Mikhailov, and E. N. Eliseev, “Study of the structural and optical properties of thin polycrystalline zinc-oxide films obtained by the ion-plasma method,” J. Opt. Technol. 82(5), 315–318 (2015) [Opt. Zh. 82(5), 66–70 (2015)].
4. V. P. Veiko, Laser Processing of Film Elements (Mashinostroenie, Leningrad, 1986).
5. L. V. Grigoriev and A. V. Mikhailov, “Photoluminescence and photoconductivity of a thin film of oxidized nanoporous silicon doped with erbium ions,” J. Opt. Technol. 82(11), 777–780 (2015) [Opt. Zh. 82(11), 79–84 (2015)].
6. W.-C. Tsai, H.-l. Kao, K.-H. Liao, Y.-H. Liu, T.-P. Lin, and E. S. Jeng, “Room temperature fabrication of ZnO/ST-cut quartz SAW UV photodetector with small temperature coefficient,” Opt. Express 23(3), 2187–2194 (2015).