DOI: 10.17586/1023-5086-2019-86-03-78-83
УДК: 681.7.068:541.6
Fabrication technology and optical properties of quartz optical fibers with a reflective thermoplastic polymer coating
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Маковецкий А.А, Замятин А.А., Аксенов В.А. Технология изготовления и оптические свойства кварцевых оптических волокон с отражающей оболочкой из термопластичного полимера // Оптический журнал. 2019. Т. 86. № 3. С. 78–83. http://doi.org/10.17586/1023-5086-2019-86-03-78-83
Makovetskiy A.A., Zamyatin A.A., Aksenov V.A. Fabrication technology and optical properties of quartz optical fibers with a reflective thermoplastic polymer coating [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 3. P. 78–83. http://doi.org/10.17586/1023-5086-2019-86-03-78-83
A. A. Makovetskiĭ, A. A. Zamyatin, and V. A. Aksenov, "Fabrication technology and optical properties of quartz optical fibers with a reflective thermoplastic polymer coating," Journal of Optical Technology. 86(3), 192-196 (2019). https://doi.org/10.1364/JOT.86.000192
The process of deposition of protective reflective coatings from melts of fluorinated thermoplastic polymers onto a quartz fiber via a spinneret method is considered. The dependence of the viscosity of thermoplastics on the temperature in the range of 225°C–365°C is presented. The dynamic parameters of the process—the dependence of the fiber tension force on the fiber drawing speed and polymer viscosity—are investigated. The maximum speeds of steady coating are established. The optical losses and numerical aperture of optical fibers are measured. It has been established that, to a certain extent, the attenuation of radiation in a quartz fiber, along with absorption, determines the scattering of radiation in a partially crystallized polymer coating.
quartz fibers drawing, spinneret method, thermoplastic polymer, polymer coating, optical losses, radiation scattering
OCIS codes: 220.4610, 160.5470, 060.0060
References:1. A. Katzir, Lasers and Optical Fibers in Medicine (Academic Press, 1993).
2. V. V. Tuchin, Lasers and Fiber Optics in Biomedical Research (Izdatel’stvo Fiziko-Matematicheskoı˘ Literatury, Moscow, 2010).
3. G. L. Danielyan, I. P. Shilov, L. Yu. Kochmarev, A. V. Ivanov, A. A. Zamyatin, A. Makovetsky, and O. O. Kuznetsov, “Fiber optic probes based on quartz lightguides with increased numerical aperture for luminescent diagnosis of tumors,” Med. Fiz. 1, 51–58 (2014).
4. A. A. Zamyatin, G. A. Ivanov, A. A. Makovetskiı˘, and I. P. Shilov, “A method of fabrication of an optical fiber,” Russian patent 2402497 (2010).
5. R. H. French, J. M. Rodríguez-Parada, M. K. Yang, R. A. Derryberry, and N. T. Pfeiffenberger, “Optical properties of polymeric materials for concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells 95(8), 2077–2086 (2011).
6. A. A. Zamyatin, A. A. Makovetskiı˘, and Yu. S. Milyavskiı˘, “About viscosity measurement of the composites of oligourethane acrylates for UV-curable protective coatings of optical fibers,” ZhPKh 75(10), 1717–1721 (2002).
7. A. A. Malkin, “Flow instability of solutions and polymer melts,” Polym. Sci. Ser. C 48(1), 21–37 (2006) [Vysokomol. Soedin. Ser. C 48(7), 1241–1262 (2006)].
8. G. Ross and A. W. Birley, “Optical properties of polymeric materials and their measurement,” J. Phys. D: Appl. Phys. 6(7), 795–808 (1973).