DOI: 10.17586/1023-5086-2019-86-04-03-10
УДК: 535.417.26
Active phase mode locking in a cavity with a controllable Michelson interferometer
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Грязнов Н.А., Соснов Е.Н., Горячкин Д.А., Никитина В.М., Родионов А.Ю. Активная фазовая синхронизация мод в резонаторе с управляемым интерферометром Майкельсона // Оптический журнал. 2019. Т. 86. № 4. С. 3–10. http://doi.org/10.17586/1023-5086-2019-86-04-03-10
Gryaznov N.A., Sosnov E.N., Goryachkin D.A., Nikitina V.M., Rodionov A.Yu. Active phase mode locking in a cavity with a controllable Michelson interferometer [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 4. P. 3–10. http://doi.org/10.17586/1023-5086-2019-86-04-03-10
N. A. Gryaznov, E. N. Sosnov, D. A. Goryachkin, V. M. Nikitina, and A. Yu. Rodionov, "Active phase mode locking in a cavity with a controllable Michelson interferometer," Journal of Optical Technology. 86(4), 197-203 (2019). https://doi.org/10.1364/JOT.86.000197
This paper presents an experimental and numerical study of the subnanosecond operating regime of a solid-state laser that uses active phase modulation for mode locking and Q-switching of the cavity. The output mirror of the laser cavity, which contains a solid-state quantron with continuous diode pumping, is made in the form of a controllable Michelson interferometer one of whose arms contains an electro-optic phase modulator that dynamically modulates the interferometer’s transmission. The modulation consists of a fast harmonic nanosecond component for mode locking and a slow component in the form of a frequency sequence of microsecond pulses that control the width of the envelope of a train of nanosecond pulses. The paper describes the features of this cavity, analyzes its advantages and disadvantages, and discusses the prospects of developing the given technology for efficient pulse compression, with the possibility of controlling the pulse width by varying the electrical parameters of the electro-optic-modulator driver.
controllable Michelson interferometer, active phase mode locking, Q-switching, electro-optic phase modulator
Acknowledgements:The research was supported by the Ministry of Education and Science of the Russian Federation (Minobrnauka) (state assignment No. 075-00924-19-00).
OCIS codes: 140.0140
References:1. M. V. Gorbunkov, A. V. Konyashkin, P. V. Kostryukov, V. B. Morozov, A. N. Olenin, V. A. Rusov, L. S. Telegin, V. G. Tunkin, Yu. V. Shabalin, and D. V. Yakovlev, “Pulsed-diode-pumped, all-solid-state, electro-optically controlled picosecond Nd:YAG lasers,” Quantum Electron. 35(1), 2–6 (2005) [Kvantovaya Elektron. (Moscow) 35(1), 2–6 (2005)].
2. U. Keller, “Ultrafast solid-state lasers,” Prog. Opt. 46, 1–115 (2004).
3. V. I. Donin, D. V. Yakovin, A. V. Gribanov, and M. D. Yakovin, “New method of Q-switching with mode locking in solid-state lasers,” J. Opt. Technol. 85(4), 193–254 (2018) [Opt. Zh. 85(4), 8–11 (2018)].
4. N. A. Gryaznov and E. N. Sosnov, “Compact high-efficiency picosecond laser for equipping mobile robotic complexes for engineering service,” in Extreme Robotics: Transactions of International Scientific–Engineering Conference (Izd. Politekh. Servis, St. Petersburg, 2014), pp. 369–371.
5. V. A. Lopota, V. V. Kirichenko, and N. A. Gryaznov, “Optical laser cavity,” Russian Patent 2,297,084 (April10, 2007).
6. M. Roth, M. Tseitlin, and N. Angert, “Oxide crystals for electro-optic Q-switching of lasers,” Glass Phys. Chem. 31, 86–95 (2005).
7. I. V. Glukhikh, S. A. Dimakov, R. F. Kurunov, S. S. Polikarpov, and S. V. Frolov, “Powerful solid-state transversely diode-pumped YAG:Nd lasers with improved radiation quality,” Tech. Phys. 56(8), 1129–1134 (2011) [Zh. Tekh. Fiz. 81(8), 70–75 (2011)].
8. V. P. Ryabukho, V. V. Lychagov, and A. L. Kal’yanov, “Michelson interferometer with a laser light source,” in Optics: The Interference of Light (Saratov State Univ., Saratov, 2009).