DOI: 10.17586/1023-5086-2018-86-06-45-49
УДК: 62-791.2 535.8
Miniature stereoscopic objective for measuring geometric parameters of poorly accessible technical objects
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Батшев В.И., Мачихин А.С., Горевой А.В., Хохлов Д.Д., Наумов А.А. Миниатюрный стереоскопический объектив для измерения геометрических параметров труднодоступных технических объектов // Оптический журнал. 2019. Т. 86. № 6. С. 45–49. http://doi.org/10.17586/1023-5086-2019-86-06-45-49
Batshev V.I., Machikhin A.S., Gorevoy A.V., Khokhlov D.D., Naumov A.A. Miniature stereoscopic objective for measuring geometric parameters of poorly accessible technical objects [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 6. P. 45–49. http://doi.org/10.17586/1023-5086-2019-86-06-45-49
V. I. Batshev, A. S. Machikhin, A. V. Gorevoĭ, D. D. Khokhlov, and A. A. Naumov, "Miniature stereoscopic objective for measuring geometric parameters of poorly accessible technical objects," Journal of Optical Technology. 86(6), 362-366 (2019). https://doi.org/10.1364/JOT.86.000362
We discuss the problem of performing nonintrusive measurements to determine the geometric parameters of poorly accessible objects. An optical system with a compact prism–lens objective was developed for simultaneously imaging a target object from two different points of view on a single detector array. A prototype of the proposed system was also constructed. The resulting optical system was experimentally confirmed to have high image quality. The shape of the test surface can be stereoscopically reconstructed via digital processing of the images, including high-accuracy determination of the geometric parameters of the surface. The results described here may have applications in machine vision, nondestructive testing, and other areas.
stereoscopic objective, geometric measurements, nondestructive testing, machine vision
Acknowledgements:The research was supported by the Russian Science Foundation (17-19-01355).
OCIS codes: 080.3620, 110.6880, 150.3040, 150.6910
References:1. E. R. Davies, Computer and Machine Vision: Theory, Algorithms, Practicalities (Academic Press, Waltham, 2012).
2. B. G. Batchelor, Machine Vision Handbook (Springer, London, 2012).
3. J. Beyerer, F. P. León, and C. Frese, Machine Vision: Automated Visual Inspection: Theory, Practice and Applications (Springer-Verlag, Berlin–Heidelberg, 2015).
4. P. G. Lorenz, The Science of Remote Visual Inspection (RVI): Technology, Applications, Equipment (Olympus Corporation, Lake Success, NY, 1990).
5. S. Zhang, Handbook of 3D Machine Vision: Optical Metrology and Imaging (CRC Press, Boca Raton, FL, 2008).
6. D. C. Leiner, Digital Endoscope Design (SPIE Press, Bellingham, WA, 2016).
7. E. B. Hubben and D. Jervis, “Advances in three dimensional measurement in remote visual inspection,” in Proceedings of the 18th World Conference on Nondestructive Testing (Durban, South Africa), 2012, pp. 16–20.
8. M. Sasaki, T. Koishi, T. Nakaguchi, N. Tsumura, and Y. Miyake, “Absolute length measurement using manually decided stereo correspondence for endoscopy,” Proc. SPIE 7261, 72610B (2009).
9. K. Keller and A. State, “A single-imager stereoscopic endoscope,” Proc. SPIE 7964, 79641Z (2011).
10. S. Y. Bae, R. J. Korniski, J. M. Choi, M. Shearn, P. Bahrami, H. M. Manohara, and H. K. Shahinian, “Development of a miniature single lens dual-aperture stereo imaging system towards stereo endoscopic imaging application,” Opt. Eng. 51, 103202 (2012).
11. C. A. Bendall, T. A. Chilek, T. W. Karpen, R. A. Lia, and J. R. Salvati, “Stereo-measurement borescope with 3-D viewing,” US Patent 7170677 B1 (2007).
12. D. A. Forsyth and J. Ponce, Computer Vision: A Modern Approach (Prentice-Hall, Upper Saddle River, NJ, 2012).
13. A. S. Machikhin and A. V. Gorevoy, “Calibration of miniature prism-based stereoscopic imagers for precise spatial measurements,” Proc. SPIE 9917, 991707 (2016).
14. A. V. Gorevoı˘, A. S. Machikhin, D. D. Khokhlov, V. I. Batshev, V. A. Kaloshin, and A. M. Perfilov, “Use of a ray-tracing model of an optoelectronic system to improve the accuracy of stereo-scopic endoscope measurements,” Defektoskopiya (9), 44–53 (2017).