ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2019-86-08-56-64

УДК: 681.78

Algorithmic simulation-modeling software complex for the investigation and development of optoelectronic observation systems

For Russian citation (Opticheskii Zhurnal):

Абакумова А.А., Малинова Т.П., Меденников П.А., Павлов Н.И. Программно-алгоритмический комплекс имитационного моделирования для исследования и разработки оптико-электронных систем наблюдения // Оптический журнал. 2019. Т. 86. № 8. С. 56–64. http://doi.org/10.17586/1023-5086-2019-86-08-56-64

 

Abakumova A.A., Malinova T.P., Medennikov P.A., Pavlov N.I. Algorithmic simulation-modeling software complex for the investigation and development of optoelectronic observation systems [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 8. P. 56–64. http://doi.org/10.17586/1023-5086-2019-86-08-56-64 

For citation (Journal of Optical Technology):

A. A. Abakumova, T. P. Malinova, P. A. Medennikov, and N. I. Pavlov, "Algorithmic simulation-modeling software complex for the investigation and development of optoelectronic observation systems," Journal of Optical Technology. 86(8), 503-509 (2019). https://doi.org/10.1364/JOT.86.000503

Abstract:

This paper presents an algorithmic software complex intended for simulation modeling of the functioning of an optoelectronic system under background conditions. Particular attention is paid to models of the background radiation and to modeling the formation of a frame of the optoelectronic system. An example is presented of modeling a dynamic scenario for an on-board optoelectronic system when an approaching fragment of space junk is observed.

Keywords:

optoelectronic system, background conditions, mathematical model, algorithmic simulation-modeling software complex, simulation modelling, dynamic scenario

OCIS codes: 000.3860

References:

1. V. P. Ivanov, V. I. Kurt, V. A. Ovsyannikov, and V. L. Filippov, The Atmosphere and the Modeling of Optoelectronic Systems in the Dynamics of External Conditions (FNPTs NPO GIPO, Kazan’, 2006).
2. V. L. Filippov, V. P. Ivanov, and V. S. Yatsyk, The Modeling and Evaluation of Modern Thermal Viewers (Izd. Kazan. Univ., Kazan’, 2015).
3. V. G. Bondur, “Methods of modeling radiation fields at the input of aerospace systems for remote probing,” Issled. Zemli Kosmosa (5), 16–27 (2000).
4. I. P. Torshina, Computer Modeling of Optoelectronic Systems for Primary Data Processing (Univ. Kniga, Logos, Moscow, 2009).
5. P. A. Sozinov, “Critical problems of mathematical modeling of aerospace weapons systems,” Vestn. Kontserna VKO Almaz-Anteı˘ (3), 17–25 (2017).
6. J. Savage, C. Coker, B. Thai, O. Aboutalib, A. Chow, N. Yamaoka, and C. Kim, “Irma 5.2 multi-sensor signature prediction model,” Proc. SPIE 6965, 69650A (2007).
7. I. Moorhead, M. Gilmore, A. Houlbrook, D. E. Oxford, D. R. Filbee, C. A. Stroud, G. Hutchings, and A. Kirk, “CAMEO-SIM: a physics-based broadband scene simulation tool for assessment of camouflage, concealment, and deception methodologies,” Opt. Eng. 40(9), 1896–1905 (2001).
8. A. A. Goodenough and S. D. Brown, “DIRSIG5: next-generation remote sensing data and image simulation framework,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10(11), 4818–4833 (2017).
9. A. Börner, “Simulating opto-electronic systems for remote sensing with SENSOR,” Proc. SPIE 4881, 472–483 (2003).
10. Ch. Leinert, S. Bowyer, L. K. Haikala, M. S. Hanner, M. G. Hauser, A.-Ch. Levasseur-Regourd, I. Mann, K. Mattila, W. T. Reach, W. Schlosser, H. J. Staude, G. N. Toller, J. L. Weiland, J. L. Weinberg, and A. N. Witt, “The 1997 reference of diffuse night sky brightness,” Astron. Astrophys. Suppl. Ser. 127, 1–99 (1998).
11. A. P. Budnik and V. P. Lunev, The Luminescence of the Night Sky (Preprint FÉI 3139, Obninsk, 2008).
12. F. E. Roach, “A photometric model of the zodiacal light,” Astron. J. 77(10), 887–891 (1972).
13. S. M. Yionoulis, “Ultraviolet and visible imager simulation,” Johns Hopkins APL Tech. Dig. 16(1), 34–42 (1995).
14. P. Noah and M. Noah, “Validation report for the celestial background scene descriptor (CBSD) zodiacal emission model CBZODY6,” Tech. Report AFRL-VS-TR-2001-1578 (Air Force Research Laboratory, Nashua, NH, 2001).
15. A. S. Tsvetkov, Handbook on Practical Operation with the Hipparcos Catalog (St. Petersburg State Univ., St. Petersburg, 2005).
16. K. Lang, Astrophysical Formulae, Astronomy and Astrophysical Library (Springer-Verlag, Berlin, 1999).
17. R. C. Smith, Observational Astrophysics (Cambridge Univ. Press, Cambridge, 1995).
18. M. S. Kiseleva, L. A. Mirzoeva, S. N. Golovanov, V. A. Kazbanov, G. E. Sinel’nikova, and I. N. Reshetnikova, “New methods of calculating the transmittance of the atmosphere, using the effective parameters of the atmosphere and optoelectronic systems,” J. Opt. Technol. 73(10), 723–728 (2006) [Opt. Zh. 73(10), 76–82 (2006)].
19. E. O. Fedorova, G. E. Sinel’nikova, M. S. Kiseleva, G. I. Lobanova, O. V. Nefedova, and O. I. Popov, Opto-Geophysical Model of the Atmosphere (GOI im. S.I. Vavilova, Leningrad, 1982).
20. M. S. Kiseleva, S. N. Golovanov, V. A. Kazbanov, I. N. Reshetnikova, G. E. Sinel’nikova, and A. P. Smirnov, “Program for calculating the spectral transparency of the atmosphere in the spectral region 0.2–25.0 μm,” J. Opt. Technol. 67(5), 448–452 (2000) [Opt. Zh. 67(5), 56–61 (2000)].
21. G. V. Pospelov and S. A. Savin, “Optimization of the operating spectral band of optoelectronic devices for detecting point objects against the background of outer space,” J. Opt. Technol. 85(7), 416–418 (2018) [Opt. Zh. 85(7), 50–53 (2018)].
22. A. V. Pravdivtsev and M. N. Akram, “Simulation and assessment of stray light effects in infrared cameras using non-sequential ray tracing,” Infrared Phys. Technol. 60, 306–311 (2013).
23. A. A. Abakumova, T. P. Malinova, P. A. Medennikov, and N. I. Pavlov, “Reverse ray tracing method for estimating the illumination from outside the field of view of optical systems,” J. Opt. Technol. 85(1), 32–35 (2018) [Opt. Zh. 85(1), 41–44 (2018)].