DOI: 10.17586/1023-5086-2019-86-09-63-67
УДК: 535.37
Highly efficient emitter based on gelatin films with a modified structure
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Лантух Ю.Д., Летута С.Н., Пашкевич С.Н., Алиджанов Э.К., Тихонов Г.А. Высокоэффективный излучатель на основе пленок желатина с модифицированной структурой // Оптический журнал. 2019. Т. 86. № 9. С. 63–67. http://doi.org/10.17586/1023-5086-2019-86-09-63-67
Lantukh Yu.D., Letuta S.N., Pashkevich S.N., Alidzhanov E.K., Tikhonov G.A. Highly efficient emitter based on gelatin films with a modified structure [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 9. P. 63–67. http://doi.org/10.17586/1023-5086-2019-86-09-63-67
Yu. D. Lantukh, S. N. Letuta, S. N. Pashkevich, E. K. Alidjanov, and G. A. Tikhonov, "Highly efficient emitter based on gelatin films with a modified structure," Journal of Optical Technology. 86(9), 582-586 (2019). https://doi.org/10.1364/JOT.86.000582
A method for the physicochemical modification of the structure of gelatinous films is proposed. For this purpose, molecular-recognition-based self-assembly was used: the formation of (bio)polymolecular complexes between gelatin and chitosan owing to the interactions of the main amino acid residues in gelatin and acidic amino groups in the structure of chitosan (cooperative polyelectrolyte interaction). The use of a gelatin–chitosan matrix made it possible to significantly increase the luminescence yield of the dyes introduced into the biopolymer. This was due to the more efficient filling of the corresponding binding gelatin sites with dye molecules and, consequently, minimization of the concentration quenching of fluorescence. In the film samples of gelatin–chitosan matrix–dye, effective superluminescence of sulforhodamine B was achieved.
gelatin, chitosan, biopolymer films, polyelectrolyte interaction, dye-polymer complex, acridine orange, sulforhodamine B, fluorescence, superluminescence
Acknowledgements:OCIS codes: 300.6290, 250.2080
References:1. V. I. Zemskiı˘, Yu. L. Kolesnikov, and I. K. Meshkovskiı˘, Physics and Technology of Pulsed Dye Lasers (ITMO University, St. Petersburg, 2005).
2. L. N. Deryugin, O. I. Ovcharenko, V. E. Sotin, and T. K. Chekhlova, “Thin-film rhodamine 6G laser on a waveguide with a corrugated substrate,” Kvant. Elektron. 2(9), 2073–2075 (1975).
3. T. Hansch, M. Pernier, and A. Schawlow, “Laser action of dyes in gelatin,” J. Quantum Electron. 7(1), 45–46 (1971).
4. S. Calixto, N. Ganzherli, S. Gulyaev, and S. Figueroa-Gerstenmaier, “Gelatin as a photosensitive material,” Molecules 23(8), 1–22 (2018).
5. T. Sh. Éfendiev, V. M. Katarkevich, A. N. Rubinov, and A. A. Afanasyev, “Compact dye laser with stationary distributed feedback based on a nanocomposite medium,” in 8th International Scientific Conference for Laser Physics and Optical Technologists, V. A. Orlovich, ed. (Minsk, 2010), pp. 21–24.
6. V. I. Yuzhakov, A. M. Saletskiı˘, B. M. Uzhinov, and V. I. Primak, “Association and its influence on the generation of mixed solutions of rhodamine 6G and oxazine 17,” Zh. Fiz. Khim. 59(7), 1664–1667 (1985).
7. V. I. Yuzhakov, “Association of dye molecules and its spectroscopic manifestation,” Usp. Khim. 48(11), 1076–2033 (1979).
8. Yu. D. Lantukh, G. A. Ketsle, S. N. Pashkevich, S. N. Letuta, and D. A. Razdobreev, “Recording mechanism of photochemical holograms in a thiazine-dye-polyvinyl-alcohol medium under the action of a helium-neon laser,” J. Opt. Technol. 73(7), 484–487 (2006) [Opt. Zh. 73(7), 70–74 (2006)].
9. Yu. D. Lantukh, S. N. Pashkevich, S. N. Letuta, E. K. Alidzhanov, and A. A. Kul’sarin, “Spectroscopic properties of DNA-acridine orange biopolymer films,” Opt. Spectrosc. 110(6), 880–884 (2011) [Opt. Spektrosk. 110(6), 932–937 (2011)]
10. Y. Kawabe, “Thin-film lasers based on dye-deoxyribonucleic acid-lipid complexes,” Appl. Phys. Lett. 81, 1372–1374 (2002).
11. V. N. Izmaı˘lova, S. R. Derkach, M. A. Sakvarelidze, S. M. Levachev, N. G. Voron’ko, and G. P. Yampolskaya, “Gelation in gelatin and multicomponent systems based on it,” Vysokomol. Soedin. 46(12), 2216–2240 (2004).
12. V. A. Izumrudov, “Self-assembly and molecular recognition phenomena in solutions of (bio)polyelectrolyte complexes,” Usp. Khim. 74(4), 401–415 (2008).
13. N. G. Voron’ko, S. R. Derkach, and N. I. Sokolan, “The interaction of gelatin with chitosan: the effect of polysaccharide concentration,” Vestn. MGTU 18(1), 80–89 (2015).
14. Z. Yu, W. Li, J. A. Hagen, Y. Zhou, D. Klotzkin, J. G. Grote, and A. J. Steckl, “Photoluminescence and lasing from deoxyribonucleic acid thin films doped with sulforhodamine,” Appl. Opt. 46(9), 1507–1513 (2007).
15. Yu. D. Lantukh and S. N. Pashkevich, “Superluminescence in DNA-dye film systems,” Vestn. OGU 12, 113–116 (2012).