DOI: 10.17586/1023-5086-2020-87-01-12-15
УДК: 535.4
Estimation of single-walled carbon nanotube concentration in polyethylene using the spectral correlation method
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Кизеветтер Д.В., Малюгин В.И., Борисова М.Э., Селезнев Д.А., Камалов А.М. Оценка концентрации одностенных углеродных нанотрубок в полиэтилене спектрально-корреляционным методом // Оптический журнал. 2020. Т. 87. № 1. С. 12–15. http://doi.org/10.17586/1023-5086-2020-87-01-12-15
Kiesewetter D.V., Malyugin V.I., Borisova M.E., Seleznev D.A., Kamalov A.M. Estimation of single-walled carbon nanotube concentration in polyethylene using the spectral correlation method [in Russian] // Opticheskii Zhurnal. 2020. V. 87. № 1. P. 12–15. http://doi.org/10.17586/1023-5086-2020-87-01-12-15
D. V. Kizevetter, V. I. Malyugin, M. É. Borisova, D. A. Seleznev, and A. M. Kamalov, "Estimation of single-walled carbon nanotube concentration in polyethylene using the spectral correlation method," Journal of Optical Technology. 87(1), 8-10 (2020). https://doi.org/10.1364/JOT.87.000008
The intensity distributions of scattered coherent radiation are studied using polyethylene films filled with single-walled carbon nanotubes. The use of a spectral-correlation method for analyzing the intensity distributions over various wavelengths make it possible to establish the relationship between certain parameters of the cross-correlation function of the distributions and the nanofiller concentration. The possibility in principle of a remote nondestructive measurement of the nanofiller concentration is demonstrated.
spectrum, speckle structure, carbon nanotubes, spectral correlation method
OCIS codes: 290.5820, 030.6140, 030.6600
References:1. M. Francon, La granulate laser (speckle) et ses applications en optique (Masson, Paris, 1978).
2. P. Jacquot, “Speckle interferometry: a review of the principal methods in use for experimental mechanics applications,” Strain 44, 57–69 (2008).
3. P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces (Pergamon, Oxford, 1963).
4. J. W. Goodman, Statistical Optics (Wiley-Interscience, New York, 1988).
5. R. Jones and C. Wykes, Holographic and Speckle Interferometry: A Discussion of the Theory, Practice and Application of the Techniques (Cambridge University Press, Cambridge, 1986).
6. R. Dones and J. N. Butters, “Some observations on the direct comparison of the geometry of two objects using speckle pattern interferometric contouring,” J. Phys. E: Sci. Instrum. 8(3), 231–234 (1975).
7. E. O. Boldyreva, D. V. Kiesewetter, V. I. Malyugin, and A. V. Modanov, “Spectral correlation method of diagnosis of optical inhomogeneities,” Proc. SPIE 7006, 700618 (2008).
8. V. I. Malyugin, D. V. Kizevetter, E. O. Boldyreva, and A. V. Modanov, “Determination of geometric parameters of diffusely scattering objects,” Pis’ma Zh. Tekh. Fiz. 34(17), 60–64 (2008).
9. V. L. Kuz’min and V. P. Romanov, “Coherent effects in light scattering in disordered systems,” Usp. Fiz. Nauk 166(3), 247–278 (1996).
10. D. A. Seleznev, N. V. Obraztsov, and D. V. Kiesewetter, “Numerical simulation of the high-voltage cable sleeve operation for 110 kV,” in Proceedings of the 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), Saint Petersburg, Russia, 2018, pp. 485–486.
11. D. Kiesewetter, V. Malyugin, A. Reznik, A. Yudin, and N. Zhuravleva, “Application of the spectral-correlation method for diagnostics of cellulose paper,” J. Phys.: Conf. Ser. 917, 042020 (2017).
12. D. V. Kiesewetter, V. I. Malyugin, A. S. Reznik, A. V. Yudin, and N. M. Zhuravleva, “Experimental setup for investigation of optically inhomogeneous objects by the spectral-correlation method,” in Proceedings of the XXVI International Scientific Conference on Electronics (ET2017), Sozopol, Bulgaria, 2017, pp. 1–3.
13. D. V. Kiesewetter, V. I. Malyugin, A. S. Reznik, and N. M. Zhuravleva, “Spectral-correlation method of investigation of high-voltage electrical insulation components,” in Proceedings of the XXVII International Scientific Conference on Electronics (ET2018), Sozopol, Bulgaria, 2018, pp. 4–5.
14. TUBALL Graphene nanotubes, https://tuball.com/en/about-tuball.
15. D. V. Kizevetter, N. V. Iljin, V. I. Malyugin, and C. Sun, “Investigation of speckle structures formed by the optical vortices of fiber lightguides,” J. Opt. Technol. 82(3), 174–177 (2015) [Opt. Zh. 82(3), 60–64 (2015)].