ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2020-87-01-16-22

УДК: 520.6, 535.31, 551.35

Raman hyperspectral technologies for remote probing of hydrocarbon geochemical fields

For Russian citation (Opticheskii Zhurnal):

Жевлаков А.П., Беспалов В.Г., Данилов О.Б., Завьялов А.К., Ильинский А.А., Кащеев С.В., Конопелько Л.А., Мак А.А., Гришканич А.С., Елизаров В.В. Рамановские гиперспектральные технологии дистанционного зондирования углеводородных геохимических полей // Оптический журнал. 2020. Т. 87. № 1. С. 16–22. http://doi.org/10.17586/1023-5086-2020-87-01-16-22

 

Zhevlakov A.P., Bespalov V.G., Danilov O.B., Zaviyalov A.K., Iliyinskiy A.A., Kashcheev S.V., Konopelko L.A., Mak A.A., Grishkanich A.S., Elizarov V.V. Raman hyperspectral technologies for remote probing of hydrocarbon geochemical fields [in Russian] // Opticheskii Zhurnal. 2020. V. 87. № 1. P. 16–22. http://doi.org/10.17586/1023-5086-2020-87-01-16-22

For citation (Journal of Optical Technology):

A. P. Zhevlakov, V. G. Bespalov, O. B. Danilov, A. K. Zav’yalov, A. A. Il’inskiĭ, S. V. Kashcheev, L. A. Konopel’ko, A. A. Mak, A. S. Grishkanich, and V. V. Elizarov, "Raman hyperspectral technologies for remote probing of hydrocarbon geochemical fields," Journal of Optical Technology. 87(1), 11-16 (2020). https://doi.org/10.1364/JOT.87.000011

Abstract:

This paper presents a brief review of the developed laser technologies and lidars with hyperspectral resolution and extremely high sensitivity for the diagnosis of complex impurities in the atmosphere and hydrosphere via Raman spectra. The technological foundations of the research, exploratory, and ecological studies of hydrocarbons are developed using Raman lidars. The prospects of hybridization of Raman spectrometry and video spectrometry in remote probing are considered.

Keywords:

laser probing, hyperspectral resolution, hydrocarbons, exploration work, atmosphere, hydrosphere

OCIS codes: 010.0010, 010.3540, 300.6450

References:

1. A. F. Bunkin, V. K. Klinkov, V. N. Lednev, S. M. Pershin, and R. N. Yul’metov, “Remote sensing of polar water areas by compact lidar: achievements and prospects,” Tr. Inst. Obshch. Fiz. im. A. M. Prokhorova, Ross. Akad. Nauk 69, 148–170 (2013).
2. Ch. Dying, U. Schmit, O. Holriher, and H. Fisher, “WITec apyron automated system of Raman visualization,” Anal. Kontrol: Tekhnol. Prib. Resheniya 27(2), 78–82 (2016).
3. D. Dionisi, P. Keckhut, Y. Courcoux, A. Hauchecorne, J. Porteneuve, J.-L. Baray, J. Leclair de Bellevue, H. Vérèmes, F. Gabarrot, G. Payen, R. Decoupes, and J. P. Cammas, “Water vapor observations up to the lower stratosphere through the Raman lidar during the Maïdo lidar calibration campaign,” Atmos. Meas. Tech. 8, 1425–1445 (2015).
4. D. I. Sidorov, “The study of DNA by Raman scattering,” Vestn. Mord. Univ. 3–4, 136–139 (2013).
5. E. Cordero, I. Latka, C. Matthäus, I. W. Schie, and J. Popp, “In-vivo Raman spectroscopy: from basics to applications,” J. Biomed. Opt. 23(7), 071210 (2018).
6. R. J. Stokes, W. E. Smith, B. E. Foulger, and C. Lewis, “Rapid screening and identification of improvised explosive and hazardous precursor materials by Raman spectroscopy,” Proc. SPIE 7119, 711901 (2008).
7. S. V. Alimov, D. V. Kosachev, O. B. Danilov, A. P. Zhevlakov, S. V. Kashcheev, An. A. Mak, S. B. Petrov, and V. I. Ustyugov, “Aviation Raman lidar with ultraspectral resolution,” J. Opt. Technol. 76(4), 199–207 (2009) [Opt. Zh. 76(4), 41–52 (2009)].
8. S. N. Cherkesov, “The use of airborne laser scanning in the oil and gas industry,” Geoprofi 4, 57–58 (2006).
9. S. V. Kashcheev, O. B. Danilov, A. P. Zhevlakov, An. A. Mak, A. A. Il’inski˘ı, V. I. Mitasov, and A. I. Shapiro, “A method to remotely search for new oil and gas fields,” Russian patent 2498358 (2013).
10. O. V. Baratashevich, L. M. Zorkin, S. L. Zuba˘ıraev, and E. V. Carus, Geochemical Methods of Prospecting for Oil and Gas Fields (Nedra, Moscow, 1980).
11. A. I. Obzhirov, “Hydrocarbon migration from the bowels to the surface and the formation of oil and gas deposits and gas hydrates in the Sea of Okhotsk during seismotectonic activations,” in Earth Degassing: Geodynamics, Geofluids, Oil and Gas and Their Parageneses (GEOS, Moscow, 2008), pp. 359–362.
12. P. A. Morgunov, A. P. Zhevlakov, A. A. Il’inski˘ı, O. M. Prishchepa, and S. V. Kashcheev, “The method of remote search for indicator substances of manifestations of oil and gas hydrocarbons,” Russian patent 2634488 (2017).
13. B. V. Senin, A. P. Afanasenko, N. I. Leonchik, and I. N. Peshkova, “Problems of reproduction and quantification of hydrocarbon resources of the offshore oil and gas provinces of Russia,” Geol. Nefti Gaza 5, 88–98 (2012).
14. K. C. Hester, S. N. White, E. T. Peltzer, P. G. Brewer, and E. D. Sloan, “Raman spectroscopic measurements of synthetic gas hydrates in the ocean,” Mar. Chem. 98, 304–314 (2006).
15. A. K. Sum, R. C. Burruss, and E. D. Sloan, “Measurement of clathrate hydrates via Raman spectroscopy,” J. Phys. Chem. B 101(38), 7371–7377 (1997).
16. A. V. Milkov, “Global estimates of hydrate-bound gas in marine sediments: how much is really out there?” Earth-Sci. Rev. 66, 183–197 (2004).
17. C. Boulart, D. P. Connelly, and M. C. Mowlem, “Sensors and technologies for in situ dissolved methane measurements and theirevaluation using technology readiness levels,” Trends Anal. Chem. 29(2), 186–195 (2010).
18. V. S. Golovinski˘ı, “A geochemical method for detecting oil deposits on the sea shelf,” Russian patent 2417387 (2011).
19. V. I. Yusupov, A. N. Salyuk, V. N. Karnaukh, I. P. Semiletov, and N. E. Shakhova, “Detection of areas of bubble methane discharge on the shelf of the Laptev Sea in the Eastern Arctic,” Dokl. Akad. Nauk 430(6), 1–4 (2010).
20. E. M. Medvedev, “The lidar scanner is not a luxury, but a remote sensing tool,” Geoprofi 4, 16–18 (2003).
21. “Laser coordinate-measuring scanning aircraft systems LeicaALS80-CM, LeicaALS80-HP, LeicaALS80-UP,” Appendix to certificate No. 68216 on type approval of measuring instruments, 1–5, http://www.kip-guide.ru.
22. V. V. Elizarov, A. S. Grishkanich, A. P. Zhevlakov, S. V. Kashcheev, A. A. Rybikov, and I. S. Sidorov, “The lidar node of the combined scan,” Nauchno-Tekh. Vestn. Inf. Tekhnol., Mekh. Opt. 16(6(106)), 1004–1009 (2016).
23. A. P. Zhevlakov, S. V. Kashcheev, V. V. Elizarov, An. A. Mak, S. A. Povarov, and A. S. Grishkanich, “Lidar complex,” Russian patent 2650776 (2018).
24. H. B. Petrov, E. A. Makarov, C. C. Nalegaev, V. G. Bespalov, A. P. Zhevlakov, and Yu. I. Soldatov, “Laser-optical system for remote underwater exploration and monitoring of hydrocarbon deposits,” Nefti Gaz Novatsii 1(180), 20–22 (2014).
25. N. V. Petrov, V. G. Bespalov, E. A. Makarov, A. P. Zhevlakov, and Y. I. Soldatov, “Design and development of underwater laser spectro-scopic system for hydrocarbon deposits exploration,” in IEEE International Conference on Laser Optics (2014).
26. V. G. Bespalov, A. P. Zhevlakov, E. A. Makarov, A. K. Zav’yalov, A. V. Matveentsev, and K. M. Ramodin, “Lidar Raman scattering system for the underwater search for hydrocarbons,” Russian patent 155916 (2015).
27. M. I. Krutik, V. P. Ma˘ıorov, V. V. Popov, and M. S. Semin, “Development and application of remotely controlled gated electron-optical cameras of the NANOGATE series for ultra-fast registration of images of fast processes,” in VII Kharitonov Thematic Scientific Readings International Conference on Extreme Conditions of Matter, Detonation, Shock Waves, Sarov, 2003.
28. E. V. Khaldeev, A. V. Bessonova, D. A. Pronin, Yu. I. Sustaeva, and O. V. Shevlyagin, “The propagation of detonation at turning angles in channels of small cross section,” Fiz. Goreniya Vzryva 5, 122–127 (2018).
29. S. N. White, “Qualitative and quantitative analysis of CO2 and CH4 dissolved in water and seawater using laser Raman spectroscopy,” Appl. Spectrosc. 64(7), 819–827 (2010).
30. V. N. Gruzdev, B. V. Shilin, V. N. Ivanov, and I. N. Surkov, “Remote observations in the ultraviolet,” J. Opt. Technol. 70(5), 350–353 (2003) [Opt. Zh. 70(5), 56–59 (2003)].
31. http://www.hamamatsu.com.
32. G. G. Gorbunov, K. N. Chikov, and V. B. Shlishevski˘ı, “Dispersion video spectrometers for hyperspectral remote probing,” Vestn. SGUGiT 4(32), 1–21 (2015).