ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2020-87-01-03-11

УДК: 621.373.535

The universal character of the breakdown of condensed media by powerful terahertz radiation and the Abbe criterion

For Russian citation (Opticheskii Zhurnal):

Макин В.С., Макин Р.С. Универсальный характер разрушения конденсированных сред мощным терагерцовым излучением и критерий аббе // Оптический журнал. 2020. Т. 87. № 1. С. 3–11. http://doi.org/10.17586/1023-5086-2020-87-01-03-11

 

Makin V.S., Makin R.S. The universal character of the breakdown of condensed media by powerful terahertz radiation and the Abbe criterion [in Russian] // Opticheskii Zhurnal. 2020. V. 87. № 1. P. 3–11. http://doi.org/10.17586/1023-5086-2020-87-01-03-11

For citation (Journal of Optical Technology):

V. S. Makin and R. S. Makin, "The universal character of the breakdown of condensed media by powerful terahertz radiation and the Abbe criterion," Journal of Optical Technology. 87(1), 1-7 (2020). https://doi.org/10.1364/JOT.87.000001

Abstract:

This paper analyzes new experimental results on the surface breakdown of semiconductors and thin metallic films by ultrashort pulses of plane-polarized terahertz radiation. It shows that the character of the observed breakdown is satisfactorily explained by the universal polariton model, tested with ultrashort pulses of visible and near-IR radiation interacting with condensed media. By using a nonlinear mathematical model of the formation of the spatial periods of a nanograting that are multiples of the wavelength of the exciting radiation, it is shown that the periods of the gratings thus formed are substantially shorter than the linear diffraction limit in the optical and terahertz regions. It is demonstrated that the diffraction limit can be overcome in nonlinear processes by which interference nanogratings are formed with normal and anomalous orientations.

Keywords:

ultrashort terahertz radiation, interaction, metals and semiconductors, surface polaritons, self-organizing microlattices, universal polariton model, diffraction limit

OCIS codes: 190.3270, 260.3230, 160.6030

References:

1. V. S. Makin and R. S. Makin, “Nonlinear interaction of linearly polarized laser radiation with condensed media and overcoming the diffraction limit,” Opt. Spectrosc. 112(2), 162–167 (2012) [Opt. Spektrosk. 112(2), 193–198 (2012)].
2. V. S. Makin, R. S. Makin, A. Ya. Vorob’ev, and Ch. Guo, in Nonlinearity in Modern Natural Science, G. G. Malinetski, ed. (Izd. LKI, Moscow, 2009), pp. 303–322.
3. A. Irizawa, S. Suga, T. Nagashima, A. Higashiya, M. Hashida, and S. Sakabe, “Laser-induced fine structures of silicon exposed to THz-FEL,” Appl. Phys. Lett. 111, 251602 (2017).
4. M. B. Agranat, O. V. Chefonov, A. V. Ovchinnikov, S. I. Ashitkov, V. E. Fortov, and P. S. Kondratenko, “Damage in thin film by high power terahertz radiation,” Phys. Rev. Lett. 120, 085704 (2018).
5. O. V. Chefonov, A. V. Ovchinnikov, S. A. Evlashin, and M. B. Agranat, “Damage threshold of Ni thin film by terahertz pulses,” J. Infrared, Millimeter, Terahertz Waves 39(11), 1047–1054 (2018).
6. O. V. Chefonov, A. V. Ovchinnikov, S. A. Evlashin, and M. B. Agranat, “Degradation and destruction of thin steel films under repeated exposure to ultrashort pulses of THz radiation,” Tech. Phys. Lett. 45(6), 570–572 (2019) [Pis’ma Zh. Tekh. Fiz. 45(11), 41–43 (2019)].
7. C. Barsi and J. W. Fleischer, “Nonlinear Abbe theory,” Nat. Photonics 7, 639–643 (2013).
8. V. S. Makin, E. I. Logacheva, and R. S. Makin, “Localized surface plasmon polaritons and nonlinear overcoming of the diffraction optical limit,” Opt. Spectrosc. 120(4), 610–614 (2016) [Opt. Spektrosk. 120(4), 641–646 (2016)].
9. P. Saleu, M. Basini, S. Bonoti, J. Hembling, M. Krasilnikov, A. Y. Nikitin, G. Samuilov, Z. Tibai, V. Zhaunerchuk, and V. Goryashko, “Matter manipulation with extreme terahertz light: progress in the enabling THz technology,” Phys. Rep. 836–837, 6–74 (2019).
10. H. Hirori, K. Shinokita, M. Shirai, S. Tani, Y. Kadoya, and K. Tanaka, “Extraordinary carrier multiplication gated by a picoseconds electric field pulse,” Nat. Commun. 2, 594 (2011).
11. J. Hebling, M. C. Hoffmann, H. Y. Hwang, K.-L. Yeh, and K. A. Nelson, “Observation of nonequilibrium carriers distribution in Ge, Si and GaAs by terahertz pump-terahertz probe measurements,” Phys. Rev. B 81, 035201 (2010).
12. B. D. O’Shea, G. Andonian, S. K. Barber, C. I. Clarke, P. D. Hoang, M. J. Hogan, B. Naranjo, O. B. Williams, Y. Yakimenko, and J. B. Rosenzweig, “Conductivity induced by high-field terahertz waves in dielectric materials,” Phys. Rev. Lett. 123, 134801 (2019).
13. P. M. Fauchet and A. E. Siegman, “Observation of higher-order laser-induced surface ripples on (111) germanium,” Appl. Phys. A 32(3), 135–140 (1983).
14. M. N. Libenson, V. S. Makin, and V. V. Trubaev, “Laser-induced relief with hexagonal symmetry on the (111) surface of germanium,” Tech. Phys. Lett. 21(2), 150–152 (1995) [Pis’ma Zh. Tekh. Fiz. 21(4), 44–50 (1995)].
15. C. R. Williams, S. R. Andrews, S. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2, 175–179 (2008).
16. V. S. Makin, R. S. Makin, A. Ya. Vorob’ev, and C. Guo, “Dissipative nanostructures and Feigenbaum’s universality in the ‘metal–high-power USP-polarized-radiation’ nonequilibrium nonlinear dynamical system,” Tech. Phys. Lett. 34(5), 387–390 (2008) [Pis’ma Zh. Tekh. Fiz. 34(9), 55–64 (2008)].
17. A. V. Ovchinnikov, O. V. Chefonov, D. S. Sitnikov, I. V. Il’ina, S. I. Ashitkov, and M. B. Agranat, “A source of THz radiation with electric field strength of more than 1 MV cm−1 on the basis of 100-Hz fem-tosecond chromium–forsterite laser system,” Quantum Electron. 48(6), 554–558 (2018) [Kvant. Elektron. 48(6), 554–558 (2018)].
18. E. Abbe, “Beiträge zur Theorie des Mikroskops und der Mikroskopischen Wahrnehmung,” Arch. Mikrosk. Anat. 9, 413–468 (1873).
19. S. I. Kudryashov, L. V. Seleznev, A. A. Rudenko, and A. A. Ionin, “In situ supercontinuum nanopatterning of silicon surface by femtosecond laser super-filaments,” Pis’ma Zh. Eksp. Tekh. Fiz. 109, 160–161 (2019).
20. S. I. Kudryashov, L. V. Seleznev, A. A. Rudenko, and A. A. Ionin, “In situ supercontinuum nanopatterning of silicon surface by femtosecond laser super-filaments,” JETP Lett. 109, 157–162 (2019).
21. X. He, A. Datta, W. Nam, L. M. Traverso, and X. Xu, “Sub-diffraction limited writing based on laser induced periodic surface structures (LIPSS),” Sci. Rep. 6, 35035 (2016).
22. M. H. Dar, N. A. Saad, C. Sahoo, S. R. G. Naraharisetty, and N. R. Desai, “Ultrashort laser-induced reproducible nano-gratings on a molybdenum surface,” Laser Phys. Lett. 14(5), 026181 (2017).
23. T. A. Klar, R. Wollhofen, and J. Jacak, “Sub-Abbe resolution: from STED microscopy to STED lithography,” Phys. Scripta T162, 014049 (2014).
24. S. Wang, S. Subhankar, P. Bienias, M. Ł ˛acki, T.-C. Tsui, M. A. Baranov, A. V. Gorshkov, P. Zoller, J. V. Porto, and S. L. Rolston, “Dark-state optical lattice with a subwavelength spatial structure,” Phys. Rev. Lett. 120, 083601 (2018).
25. M. McDonald, J. Trisnadi, K.-X. Yao, and C. Chin, “Superresolution microscopy of cold atoms in an optical lattice,” Phys. Rev. X 9, 021001 (2019).
26. F. M. Huang and N. I. Zheludev, “Super-resolution without evanescent waves,” Nano Lett. 9, 1249–1254 (2009).