ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2020-87-01-30-36

УДК: 532.783, 535.421

Effect of yttrium oxide nanoparticles on the dielectric properties and dynamics of the formation of holographic polymer–liquid-crystal composites

For Russian citation (Opticheskii Zhurnal):

Жаркова Г.М., Стрельцов С.А. Влияние наночастиц оксида иттрия на диэлектрические свойства и динамику формирования голографических полимерно-жидкокристаллических композитов // Оптический журнал. 2020. Т. 87. № 1. С. 30–36. http://doi.org/10.17586/1023-5086-2020-87-01-30-36

 

Zharkova G.M., Streltsov S.A. Effect of yttrium oxide nanoparticles on the dielectric properties and dynamics of the formation of holographic polymer–liquid-crystal composites [in Russian] // Opticheskii Zhurnal. 2020. V. 87. № 1. P. 30–36. http://doi.org/10.17586/1023-5086-2020-87-01-30-36

For citation (Journal of Optical Technology):

G. M. Zharkova and S. A. Streltsov, "Effect of yttrium oxide nanoparticles on the dielectric properties and dynamics of the formation of holographic polymer–liquid-crystal composites," Journal of Optical Technology. 87(1), 23-28 (2020). https://doi.org/10.1364/JOT.87.000023

Abstract:

The electro-optic properties of highly structured polymer–liquid-crystal composites based on acrylate monomers and E7 liquid crystals doped with Y2O3Y2O3 nanoparticles are considered. The influence of nanoparticles on the diffraction efficiency, the driving voltage, the dielectric properties, and the dynamics of the formation of holographic and polarization holographic diffraction gratings inscribed in polymer–liquid-crystal composites is demonstrated. The diffraction efficiency of the doped holographic diffraction gratings decreases, and that of the polarization diffraction gratings increases. Doping with nanoparticles leads to a decrease in driving stresses and increases the formation time and dielectric constant of highly structured polymer–liquid-crystal composites.

Keywords:

holography, diffraction gratings, nanoparticles, liquid-crystal composites

Acknowledgements:

The research was supported by the Comprehensive Program for Basic Research of the Siberian Branch, Russian Academy of Sciences “Interdisciplinary Integration Studies” for 2018–2020 (03-03-2018-0001).

OCIS codes: 090.0090, 090.7330

References:

1. A. S. Matharu, S. Jeeva, and P. S. Ramanujam, “Liquid crystals for holographic optical data storage,” Chem. Soc. Rev. 36, 1868–1880 (2007).
2. W. Yu, T. Konishi, T. Hamomoto, H. Toyota, T. Yotsuya, and Y. Ichioka, “Polarization-multiplexed diffractive optical elements fabricated by subwavelength structures,” Appl. Opt. 41(1), 96–100 (2002).
3. H. Ono, F. Takahashi, and A. Emoto, “Polarization holograms in azo dye-doped polymer dissolved liquid crystal composites,” J. Appl. Phys. 97, 053508 (2005).
4. Y. J. Liu and X. W. Sun, “Holographic polymer-dispersed liquid crystals: materials, formation, and applications,” Adv. OptoElectron. 2008, 684349 (2008).
5. Y. L. Wu, A. Natansohn, and P. Rochon, “Photoinduced birefringence and surface relief gratings in novel polyurethanes with azobenzene groups in the main chain,” Macromolecules 34, 7822–7828 (2001).

6. G. Cipparrone, A. Mazzulla, and G. Russo, “Diffraction gratings in polymer-dispersed liquid crystals recorded by means of polarization holographic technique,” Appl. Phys. Lett. 78(9), 1186–1188 (2001).
7. N. V. Kamanina, “Fullerene-dispersed nematic liquid crystal structures: dynamic characteristics and self-organization processes,” Phys.-Usp. 48(4), 419–427 (2005).
8. M. Jamil, F. Ahmad, J. T. Rhee, and Y. J. Jeon, “Nanoparticle-doped polymer-dispersed liquid crystal display,” Curr. Sci. 101(12), 1544–1552 (2011).
9. O. V. Yaroshchuk, L. O. Dolgov, and A. D. Kiselev, “Electro-optics and structural peculiarities of liquid crystal–nanoparticle polymer composites,” Phys. Rev. E 72, 051715 (2005).
10. O. V. Yaroshchuk and L. O. Dolgov, “Electro-optics and structure of polymer dispersed liquid crystals doped with nanoparticles of inorganic materials,” Opt. Mater. 29, 1097–1102 (2007).
11. W. Li, M. Zhu, X. Ding, B. Li, W. Huang, H. Cao, Z. Yang, and H. Yang, “Studies on electro-optic properties of polymer matrix/LC/SiO2 nanoparticles composites,” J. Appl. Polym. Sci. 111(3), 1449–1453 (2009).
12. G. M. Zharkova, S. A. Streltsov, and O. Yu. Podyacheva, “Structured liquid-crystal composites doped with carbon nanofibers,” J. Opt. Technol. 82(4), 252–255 (2015) [Opt. Zh. 82(4), 74–79 (2015)].
13. G. M. Zharkova, K. V. Zobov, N. A. Romanov, V. V. Syzrantsev, and S. P. Bardakhanov, “Polymer-liquid crystal composites doped by inorganic oxide nanopowders,” Nanotechnol. Russ. 10(5–6), 380–387 (2015).
14. O. S. Vdovin, Z. I. Kir’yashkina, and V. N. Kotelkov, Films of Oxides of Rare-Earth Elements in MDM and MDC Structures [in Russian] (Publishing House of Saratov University, Saratov, 1983).
15. N. V. Kamanina, Y. A. Zubtcova, A. A. Kukharchik, C. Lazar, and I. Rau, “Control of the IR-spectral shift via modification of the surface relief between the liquid crystal matrixes doped with the lanthanide nanoparticles and the solid substrate,” Opt. Express 24(2), A270–A275 (2016).
16. G. M. Zharkova and S. A. Streltsov, “Effect of yttrium oxide nanoparticles on the diffraction efficiency of holographic polymer-liquid crystal gratings,” Russ. Phys. J. 61(7), 1274–1280 (2018).
17. G. M. Zharkova, V. V. Osipov, V. V. Platonov, A. V. Podkin, and S. A. Strelt’sov, “Investigation of the effect of yttrium oxide nanoparticles doped with cerium and neodymium on electro optics of liquid crystal polymer composites,” Russ. Phys. J. 59(8), 1295–1301 (2016).
18. S. Drazic, Liquid Crystal Dispersions (World Scientific Publishing, Singapore, 1995).
19. L. Petti, Optical Characterization of Novel PDLC Systems (Lambert Academic Publishing, 2010).
20. K. R. Zhdanov, A. I. Romanenko, and G. M. Zharkova, “Effect of dielectric titanium, yttrium, and silicon oxide nanoparticles on electro optic characteristics of polymer-dispersed liquid crystals,” Russ. Phys. J. 58(9), 1291–1296 (2016).
21. S. S. Shim, J. Y. Woo, H. M. Jeong, and B. K. Kim, “High dielectric titanium dioxide doped holographic PDLC,” Soft Mater. 7, 93–104 (2009).
22. B.-G. Wu, J. H. Erdmann, and J. W. Doane, “Response times and voltages for PDLC light shutters,” Liq. Cryst. 5, 1453–1465 (1989).
23. J. C. Maxwell-Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London 203, 385–420 (1904).
24. D. A. G. Bruggemann, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen,” Ann. Phys 416, 636–679 (1935).
25. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 1999).
26. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).