DOI: 10.17586/1023-5086-2020-87-01-45-49
УДК: 004.021, 004.415.2, 004.622, 004.623, 004.624, 004.67, 681.518.3, 681.586
Development of a hardware-software measurement system for the collection, detection, and processing of photoplethysmograms
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Карасева Е.А. Разработка программно-аппаратного измерительного комплекса сбора, детектирования и обработки фотоплетизмограмм // Оптический журнал. 2020. Т. 87. № 1. С. 45–49. http://doi.org/10.17586/1023-5086-2020-87-01-45-49
Karaseva E.A. Development of a hardware-software measurement system for the collection, detection, and processing of photoplethysmograms [in Russian] // Opticheskii Zhurnal. 2020. V. 87. № 1. P. 45–49. http://doi.org/10.17586/1023-5086-2020-87-01-45-49
E.A. Karaseva, "Development of a hardware-software measurement system for the collection, detection, and processing of photoplethysmograms," Journal of Optical Technology. 87(1), 36-39 (2020). https://doi.org/10.1364/JOT.87.000036
A photoplethysmograph with a data acquisition circuit board, using a USB interface and an analog optical sensor, was developed. This study describes an information system for collecting, processing, and storing photoplethysmographic pulse curves. Using a photoplethysmograph, a small sample was collected for processing using a software package written in the MATLAB programming environment.
photoplethysmography, semiautomatic signals processing, biomedical signals detection, wavelet processing, MATLAB
OCIS codes: 170.3890, 170.1610, 280.1415, 120.5240, 230.3990, 230.0230, 280.4788
References:1. P. Dung, Y. S. Lee, P. Pubudu, and S. Aruna, “Smartwatch: performance evaluation for long-term heart rate monitoring,” in International Symposium on Bioelectronics and Bioinformatics (ISBB), Beijing, China, Oct. 14–17, 2015, pp. 144–147.
2. N. P. Constant, T. Wang, and K. Mankodiya, “Pulseband: a hands-on tutorial on how to design a smart wristband to monitor heart-rate,” in IEEE Virtual Conference on Applications of Commercial Sensors (VCACS) (2015), pp. 1–3.
3. A. O. Putri, A. Musab, M. Saad, and S. S. Hidayat, “Wearable sensor and Internet of Things technology for better medical science: a review,” Int. J. Emerging Technol. Learn. (iJET) 7(4.11), 1–4 (2019).
4. D. Borchevkin, A. Shestakov, V. Petrov, S. Botman, E. Bogdanov, V. Kasymov, M. Patrushev, and N. Shusharina, “Method of photoplethysmography diagnostics of domesticated animals cardiovascular diseases,” J. Vet. Sci. Technol. 7(1), 287 (2016).
5. B. Nenova and I. Iliev, “An automated algorithm for fast pulse wave detection,” Int. J. BIOautom. 14(3), 203–216 (2010).
6. B. Nenova and I. Iliev, “Non-invasive methods of peripheral pulse detection: advantages and disadvantages,” Annu. J. Electron. 1(1), 57–60 (2009).
7. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
8. N. Bosschaart, G. J. Edelman, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber, “A literature review and novel theoretical approach on the optical properties of whole blood,” Lasers Med. Sci. 29(2), 453–479 (2014).