DOI: 10.17586/1023-5086-2020-87-01-62-68
УДК: 535.1, 535.5
Temperature dispersions of refractive indices and absorption coefficients of KNbO3 and LiNbO3 crystals in the THz frequency range
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Галуцкий В.В., Ивашко С.С. Температурные дисперсии показателей преломления и коэффициентов поглощения кристаллов ниобатов калия и лития, активированных ионами иттербия, эрбия и хрома, в терагерцовом диапазоне частот // Оптический журнал. 2020. Т. 87. № 1. С. 62–68. http://doi.org/10.17586/1023-5086-2020-87-01-62-68
Galutskiy V.V., Ivashko S.S. Temperature dispersions of refractive indices and absorption coefficients of KNbO3 and LiNbO3 crystals in the THz frequency range [in Russian] // Opticheskii Zhurnal. 2020. V. 87. № 1. P. 62–68. http://doi.org/10.17586/1023-5086-2020-87-01-62-68
V. V. Galutskiy and S. S. Ivashko, "Temperature dispersions of refractive indices and absorption coefficients of KNbO3 and LiNbO3 crystals in the THz frequency range," Journal of Optical Technology. 87(1), 50-55 (2020). https://doi.org/10.1364/JOT.87.000050
The temperature dispersions of refractive indices and absorption coefficients in the terahertz range for the spectra of Er3+Er3+-, Yb3+Yb3+-, and Cr3+Cr3+-activated potassium niobate and lithium niobate crystals, grown by the Czochralski method with liquid recharge, are considered. A strong temperature dependence for the refractive index of the LiNbO3:Er,Yb crystal was found—3.5×10−3K−13.5×10−3K−1. A minimum temperature dependence of 0.2×10−3K−10.2×10−3K−1 for the refractive index of the LiNbO3:Cr crystal was also obtained.
potassium niobate, lithium niobate, terahertz range
Acknowledgements:The research was supported by the Russian Foundation for Basic Research (19-42-230006 r_a); Ministry of Education and Science of the Russian Federation (8.4958.2017/BCh(17/28-t)).
OCIS codes: 300.6495, 190.0190
References:1. W. Zhao, J. Qi, Y. Lu, R. Wang, Q. Zhang, H. Xiong, Y. Zhang, Q. Wu, and J. Xu, “On-chip plasmon-induced transparency in THz metamaterial on a LiNbO3 subwavelength planar waveguide,” Opt. Express 27(5), 7373–7383 (2019).
2. A. A. Dubinov, V. Ya. Aleshkin, and S. V. Morozov, “Generation of THz radiation at a difference frequency in a HgCdTe laser,” Quantum Electron. 49(7), 689–692 (2019) [Kvant. Elektron. 49(7), 689–692 (2019)].
3. K. Ravi, W. R. Huang, S. Carbajo, E. A. Nanni, D. N. Schimpf, E. P. Ippen, and F. X. Kärtner, “Theory of terahertz generation by optical rectification using tilted-pulse fronts,” Opt. Express 23(4), 5253–5276 (2015).
4. E. Smirnov, C. E. Rüter, D. Kip, K. Shandarova, and V. Shadarov, “Light propagation in double-periodic nonlinear photonic lattices in lithium niobate,” Appl. Phys. B 88(3), 359–362 (2007).
5. M. N. Palatnikov, N. V. Sidorov, O. V. Makarova, S. L. Panasyuk, E. R. Kurkamgulova, and I. V. Yudin, “Relationship between the optical damage resistance and radiation hardness and the influence of threshold effects on the radiation hardness of ZnO-doped LiNbO3 crystals,” Inorg. Mater. 54, 55–59 (2018).
6. L. X. Cai, W. Q. Jin, S. Yoda, Z. L. Pan, X. A. Liang, and Z. H. Liu, “The convective effect on the morphological instability of KNbO3 crystals,” J. Cryst. Growth 231(1–2), 230–234 (2001).
7. Z. Li, M. Wang, S. Wang, B. Yuan, P. Bing, D. Xu, and J. Yao, “Investigation of stimulated polariton scattering from the B1-symmetry modes of the KNbO3 crystal,” Curr. Opt. Photon. 2(1), 90–95 (2018).
8. R. Sowade, I. Breunig, C. Tulea, and K. Buse, “Nonlinear coefficient and temperature dependence of the refractive index of lithium niobate crystals in the terahertz regime,” Appl. Phys. B 99(1–2), 63–66 (2010).
9. L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
10. X. Wu, C. Zhou, W. R. Huang, F. Ahr, and F. X. Kärtner, “Temperature dependent refractive index and absorption coefficient of congruent lithium niobate crystals in the terahertz range,” Opt. Express 23(23), 29729–29737 (2015).
11. M. Unferdorben, Z. Szaller, I. Hajdara, J. Hebling, and L. Pálfalvi, “Measurement of refractive index and absorption coefficient of congruent and stoichiometric lithium niobate in the terahertz range,” J. Infrared, Millimeter, Terahertz Waves 36(12), 1203–1209 (2005).
12. V. V. Galutski˘ı, E. V. Stroganova, N. A. Yakovenko, K. V. Sudarikov, D. A. Rasse˘ıkin, and N. A. Yurova, “Structure of the LiNbO3 :Mg,Cr crystal and its properties at visible and terahertz wavelengths,” J. Opt. Technol. 85(4), 250–254 (2018) [Opt. Zh. 85(4), 75–80 (2018)].
13. V. V. Galutskiy, M. I. Vatlina, and E. V. Stroganova, “Growth of single crystal with a gradient of concentration of impurities by the Czochralski method using additional liquid charging,” J. Cryst. Growth 311(4), 1190–1194 (2009).
14. E. V. Stroganova, V. V. Galutski˘ı, K. V. Sudarikov, D. A. Rasseikin, and N. A. Yakovenko, “Determination of the center composition of gradient-activated crystals of lithium niobate mixed with magnesium and chromium,” Optoelectron. Instrum. Data Process. 52(2), 167–173 (2016) [Avtometriya 52(2) 73–80 (2016)].
15. V. M. Voskresenski˘ı, O. R. Starodub, N. V. Sidorov, and M. N. Palatnikov, “Investigation of the cluster formation in lithium niobate crystals by computer method,” Crystallogr. Rep. 62(2), 205–209 (2017) [Kristallografiya 62(2), 213–217 (2017)].