ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2020-87-01-77-80

УДК: 535.232.65

Method of measuring the radiation power of a material and the corresponding blackbody model to determine its normal emissivity

For Russian citation (Opticheskii Zhurnal):

Менделеев В.Я., Качалов В.В. Методика измерения мощности излучения исследуемого материала и модели абсолютно черного тела для определения нормальной излучательной способности материала // Оптический журнал. 2020. Т. 87. № 1. С. 77–80. http://doi.org/10.17586/1023-5086-2020-87-01-77-80

 

Mendeleev V.Ya., Kachalov V.V. Method of measuring the radiation power of a material and the corresponding blackbody model to determine its normal emissivity [in Russian] // Opticheskii Zhurnal. 2020. V. 87. № 1. P. 77–80. http://doi.org/10.17586/1023-5086-2020-87-01-77-80

For citation (Journal of Optical Technology):

V. Ya. Mendeleev and V. V. Kachalov, "Method of measuring the radiation power of a material and the corresponding blackbody model to determine its normal emissivity," Journal of Optical Technology. 87(1), 63-65 (2020). https://doi.org/10.1364/JOT.87.000063

Abstract:

When measuring the normal emissivity of materials, it is assumed that the radiation flux density on the surface of the test material and in the blackbody model for the corresponding surface is uniformly distributed. However, because of the design features of the heaters of the test material and blackbody model, this assumption is not always valid. This article proposes a methodology for measuring the radiation power of the surface of a test material and the corresponding blackbody model, exhibiting a uniform radiation flux density in the surface central region. The feasibility of measuring the radiation power of a surface with a uniform radiation flux density was experimentally confirmed on an alumina sample at a temperature of 1195 K.

Keywords:

emissivity, radiation flux density, radiation power, emitting surface area

Acknowledgements:

The authors are grateful to V. V. Pilipenko and V. A. Mozdykov for their help in preparing the experimental setup.

OCIS codes: 120.5630, 120.4640

References:

1. E. M. Sparrow and R. D. Cess, Radiation Heat Transfer (Brooks, 1966).
2. L. Hanssen, B. Wilthan, C. Monte, J. Hollandt, J. Hameury, J.-R. Filtz, F. Girard, M. Battuello, and J. Ishii, “Report on the CCT supplementary comparison S1 of infrared spectral normal emittance/emissivity,” Metrologia 53, 03001 (2016).
3. L. del Campo, R. B. Pérez-Sáez, X. Esquisabel, and M. J. Tello, “New experimental device for infrared spectral directional emissivity measurements in a controlled environment,” Rev. Sci. Instrum. 77, 113111 (2006).
4. A. Y. Varaksin, M. E. Romash, and V. N. Kopeitsev, “The possibility of generation of concentrated fire vortices without forced swirling,” Dokl. Phys. 59(5), 203–205 (2014).
5. L. Li, K. Yu, K. Zhang, and Y. Liu, “Study of Ti–6Al–4V alloy spectral emissivity characteristics during thermal oxidation process,” Int. J. Heat Mass Transfer 101, 699–706 (2016).
6. H. Liang, F. Yang, G. Wang, Y. Guo, Y. Kang, Y. Wang, H. Xue, and Y. Wei, “Study of the optical and absorption properties of micronanostructure on metal surfaces,” J. Opt. Technol. 85(2), 83–87 (2018) [Opt. Zh. 85(2), 28–33 (2018)].
7. B. V. Skvortsov, A. S. Pertsovich, and D. M. Zhivonosnovskaya, “Simulation modeling of the signature of a thermal object,” J. Opt. Technol. 85(4), 211–217 (2018) [Opt. Zh. 85(4), 28–35 (2018)].
8. L. Hanssen, S. Mekhontsev, and V. Khromchenko, “Infrared spectral emissivity characterization facility at NIST,” Proc. SPIE 5405, 1–12 (2004).
9. C. Monte and J. Hollandt, “The measurement of directional spectral emissivity in the temperature range from 80◦ C to 500◦ C at the Physikalisch-Technische Bundesanstalt,” High Temp.—High Pressures 39, 151–164 (2010).
10. A. E. She˘ındlin, ed., Radiative Properties of Solid Materials (Énergiya, Moscow, 1974).