DOI: 10.17586/1023-5086-2020-87-12-103-110
УДК: 621.383.45: 621.793.09
Photoresistors from heteroepitaxial structures n-CdxHg1-xTe with exclusion of charge carriers within the 3–5 µm spectral range
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Филатов А.В., Сусов Е.В., Гусаров А.В., Карпов В.В. Фоторезисторы с эксклюзией носителей заряда для спектрального диапазона 3–5 мкм из гетероэпитаксиальных структур n – CdxHg1-xTe// Оптический журнал. 2020. Т. 87. № 12. С. 103 –110. http://doi.org/10.17586/1023-5086-2020-87-12-103-110
A. V. Filatov, E. V. Susov, A. V. Gusarov, and V. V. Karpov, "Photoresistors from heteroepitaxial structures n-CdxHg1-xTe with exclusion of charge carriers within the 3–5 µm spectral range," Journal of Optical Technology. 87(12), 774-779 (2020). https://doi.org/10.1364/JOT.87.000774
The properties of photoresistors with photosensitive areas of 0.05mm×0.05mm and 0.5mm×0.5mm made of heteroepitaxial structures n-CdxHg1−xTe were investigated within the spectral range of 3–5 µm using indium contacts at a temperature of 80 K. The dependence of the lifetime and concentration of the charge carriers inside the pixels on the bias voltage was determined within a wide range of exposure to background radiation. In photoresistors with a pixel size of 0.05mm×0.05mm, a nonequilibrium mode of operation with the exclusion of minority charge carriers can be realized. The electron concentration in this mode decreases to 1×1013cm−3. Photoresistors made of epitaxial structures n-CdxHg1−xTe (x≈0.305) in exclusion mode at 80 K have a voltage sensitivity of the order of 107V/W and a specific detectivity of approximately 1.3×1012cm⋅Hz1/2/W.
heteroepitaxial structures of cadmium-mercury-tellurium, photoresistor, exclusion of charge carriers
OCIS codes: 230.5160, 040.3060, 160.6840
References:1. A. V. Filatov, E. V. Susov, N. S. Kuznetsov, and V. V. Karpov, “Photoresistors of the 2–15 m spectral range based on CdxHg1xTe heteroepitaxial structures obtained by molecular-beam epitaxy,” J. Opt. Technol. 83(9), 543–548 (2016).
2. A. V. Filatov, E. V. Susov, and V. V. Karpov, “Photoresistors with charge-carrier exclusion for the 8–16 m spectral range, made from n-CdxHg1xTe heteroepitaxial structures,” J. Opt. Technol. 85(6), 359–366 (2018).
3. A. V. Gusarov, A. V. Filatov, E. V. Susov, V. V. Karpov, and P. D. Gindin, “Radially biased photoresistors with heteroepitaxial CdxHg1xTe structure,” J. Opt. Technol. 86(2), 108–113 (2019).
4. V. S. Varavin, S. A. Dvoretsky, V. I. Liberman, N. N. Mikhailov, and Y. G. Sidorov, “Molecular beam epitaxy of high quality Hg1xCdxTe films with control of the composition distribution,” J. Cryst. Growth 159, 1161–1166 (1996).
5. J. F. Siliquini, K. A. Fynn, B. D. Nener, L. Faraone, and R. H. Hartley, “Improved device technology for epitaxial Hg1xCdxTe infrared photoconductor arrays,” Semicond. Sci. Technol. 9, 1515–1522 (1994).
6. K. V. Shalimova, Semiconductor Physics (Lan’, St. Petersburg, 2010).
7. M. A. Kinch, S. R. Borrello, and A. Simmons, “0.1 eV HgCdTe hotoconductive detector performance,” Infrared Phys. 17(2), 127–135
(1977).
8. V. P. Ponomarenko, Quantum Photosensors (JSC Research and Manufacturing Enterprise “ORION,” Moscow, 2018).
9. Z. Shol, I. Marfan, N. Myunsh, P. Torel, and P. Kombet, Infrared Receivers [Translated from French], L. N. Kurbatov, ed. (Mir, Moscow, 1969).