ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2020-87-12-03-17

УДК: 520.248, 520.224.062.42

Preliminary estimate of instrumental polarization effects in the LST-3 Large Solar Telescope

For Russian citation (Opticheskii Zhurnal):

Кукушкин Д.Е., Белан А.Р., Бахолдин А.В., Колобов Д.Ю., Чупраков С.А., Демидов М.Л., Васильев В.Н. Предварительная оценка инструментальных поляризационных эффектов крупного солнечного телескопа КСТ-3 // Оптический журнал. 2020. Т. 87. № 12. С. 3 –17. http://doi.org/10.17586/1023-5086-2020-87-12-03-17

For citation (Journal of Optical Technology):
D. E. Kukushkin, A. R. Belan, A. V. Bakholdin, D. Yu. Kolobov, S. A. Chuprakov, M. L. Demidov, and V. N. Vasil’ev, "Preliminary estimate of instrumental polarization effects in the LST-3 Large Solar Telescope," Journal of Optical Technology. 87(12), 705-714 (2020). https://doi.org/10.1364/JOT.87.000705
Abstract:

This article presents a polarization calculation for the LST-3 large solar telescope. It describes the interaction of the telescope mirrors and includes a calculation of the transmittance of the telescope’s optical system for incident radiation with various polarization states. It estimates the instrumental polarization, cross-talk, and depolarization at Gregorian focus F2 and after tilted mirror M4 of the telescope. The estimate is made using modeling of an aluminum coating on the mirrors for axial and peripheral image points at reference wavelengths in the 400–2000 nm region. The mean Mueller matrices are found at Gregorian focus F2 and after tilted mirror M4. The polarization distortions at the Gregorian focus are insignificant, but they are substantial after tilted flat mirror M4.

Keywords:

instrumental polarization, Muller matrices, polarization calculation, Large Solar telescope КСТ-3

OCIS codes: 120.5410

References:

1. J. O. Stenflo, “Polarization of the Sun’s continuous spectrum,” Astron. Astrophys. 429(2), 713–730 (2005).
2. J. O. Stenflo, “Solar magnetic fields as revealed by Stokes  olarimetry,” Astron. Astrophys. Rev. 21(1), 66 (2013).
3. M. L. Demidov, X. F.Wang, D. G.Wang, and Y. Y. Deng, “On the measurements of full-disk longitudinal magnetograms at Huairou Solar Observing Station,” Sol. Phys. 293(10), 146 (2018).
4. A. A. Chelpanov and N. I. Kobanov, “Oscillations accompanying a He i 10830 Å negative flare in a solar facula,” Sol. Phys. 293(11), 157 (2018).
5. D. Y. Kolobov, N. I. Kobanov, A. A. Chelpanov, A. A. Kochanov, S. A. Anfinogentov, S. A. Chupin, I. I. Myshyakov, and V. E. Tomin, “Behaviour of oscillations in loop structures above active regions,” Adv. Space Res. 56(12), 2760–2768 (2015).
6. G. B. Gelfreikh, S. D. Snegirev, and V. M. Friedman, “Investigation of the magnetic field of a solar flocculus based on radio astronomical observations,” Radiofiz. 18(12), 1764–1769 (1975).
7. T. I. Kaltman, A. A. Kochanov, I. I. Myshyakov, V. P. Maksimov, D. V. Prosovetsky, and S. Kh. Tokhchukova, “Observations and modeling of the spatial distribution and microwave radiation spectrum of the active region NOAA 11734,” Geomagn. Aeron. 55(8), 1124–1130 (2015).
8. P. Zeeman, “The effect of magnetisation on the nature of light emitted by a substance,” Nature 55(1424), 347 (1897).
9. W. Hanle, “Über magnetische Beeinflussung der Polarisation der Resonanz fluoreszenz,” Z. Phys. 30(1), 93–105 (1924).
10. F. M. Jaeger and L. Oetken, Zur Theorie und Praxis der instrumentellen Polarisation, Vol. 31 of Publikationen des Astrophysikalischen Observatoriums zu Potsdam: Astrophysikalisches Observatorium (1968), p. 5.
11. J. R. Kuhn, K. S. Balasubramaniam, G. Kopp, M. J. Penn, A. J. Dombard, and H. Lin, “Removing instrumental polarization from infrared solar polarimetric observations,” Sol. Phys. 153, 143–155 (1994).
12. V. M. Grigoryev, N. I. Kobanov, B. F. Osak, V. L. Selivanov, and V. E. Stepanov, “The vector magnetograph of the Sayan Solar Observatory,” NASA Conf. Publ. 2374, 231–256 (1985).
13. V. M. Grigor’ev, M. L. Demidov, D. Yu. Kolobov, V. Pulyaev, V. Skomorovsky, and S. Chuprakov, “Project of the Large Solar
Telescope with mirror 3 m in diameter,” Soln.-Zemnaya Fiz. 6(2), 19–36 (2020).
14. L. Kolokolova, J. Hough, and A.-C. Levasseur-Regourd, Polarimetry of Stars and Planetary Systems (Cambridge University Press, Cambridge, 2015).
15. G. Van Harten, F. Snik, and C. U. Keller, “Polarization properties of real aluminum mirrors, Influence of the aluminum oxide layer,” Publ. Astron. Soc. Pac. 121, 377–383 (2009).
16. H. Di, “Polarization analysis and corrections of different telescopes in polarization lidar,” Appl. Opt. 54(3), 389–397 (2015).
17. E. F. Borra, “Polarimetry at the coudé focus: instrumental effects,” Publ. Astron. Soc. Pac. 88(524), 548–556 (1976).
18. D. Clarke, “Effects of polarization on the transmission of coudéspectrometer systems,” Astron. Astrophys. 24, 165–170
(1973).
19. J. Tinbergen, “Accurate optical polarimetry on the Nasmyth platform,” Publ. Astron. Soc. Pac. 119, 1371–1384 (2007).
20. H. Socas-Navarro, “Characterization of telescope polarization properties across the visible and near-infrared spectrum,” Astron. Astrophys. 531, A2 (2011).
21. M. de Juan Ovelar, “Instrumental polarisation at the Nasmyth focus of the E-ELT,” Astron. Astrophys. 562, A8 (2014).
22. G. Witzel, “The instrumental polarization of the Nasmyth focus polarimetric differential imager NAOS/CONICA (NACO) at the VLT,” Astron. Astrophys. 525, A130 (2011).
23. R. M. Anche, A. K. Sen, G. C. Anupama, K. Sankarasubramanian, and W. Skidmore, “Analysis of polarization introduced due to the telescope optics of the Thirty Meter Telescope,” J. Astron. Telesc. Instrum. Syst. 4(1), 018003 (2018).
24. R. M. Anche, G. C. Anupama, K. Reddy, A. Sen, K. Sankarasubramanian, A. N. Ramaprakash, S. Sengupta, W.
Skidmore, J. Atwood, S. Tirupathi, and S. B. Pandey, “Analytical modelling of Thirty Meter Telescope optics polarization,” Proc. SPIE 9654, 965408 (2015).
25. R. M. Anche, G. C. Anupama, and K. Sankarasubramanian, “Preliminary design techniques to mitigate the polarization effects due to telescope optics of the Thirty Meter Telescope (TMT),” J. Optics 47(2), 166–173 (2018).
26. G. H. Sanders, “The Thirty Meter Telescope (TMT): an international observatory,” J. Astrophys. Astron. 34(2), 81–86 (2013).
27. D. M. Harrington and S. R. Sueoka, “Polarization modeling and predictions for Daniel K. Inouye Solar Telescope part 1: telescope and example instrument configurations,” J. Astron. Telesc. Instrum. Syst. 3(1), 018002 (2017).
28. D. M. Harrington, F. Snik, C. U. Keller, S. R. Sueoka, and G. van Harten, “Polarization modeling and predictions for DKIST part 2: application of the Berreman calculus to spectral polarization fringes of beamsplitters and crystal retarders,” J. Astron. Telesc. Instrum. Syst. 3(4), 048001 (2017).
29. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (Elsevier, New York, 1977; Mir, Moscow, 1981).
30. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Pergamon Press, Oxford, 1965; Nauka, Moscow, 1973).
31. V. M. Zolotarev, Optical Constants of Natural and Technical Media (Khimiya, Leningrad, 1984).